Alaska Clean Seas Technical Manual

Volume 1 Tactics Descriptions

Revision 15, June 2021

ALASKA CLEAN SEAS TECHNICAL MANUAL VOLUME 1 TACTICS DESCRIPTIONS

© 2021 -- All rights reserved. No part of this work covered by the copyrights hereon may be reproduced in any form or by any means without the expressed written consent of Alaska Clean Seas.

Alaska Clean Seas Pouch 340022 Prudhoe Bay, AK 99734-0022

Phone: (907) 659-2405 Fax: (907) 659-2616

DISCLAIMER

In producing this manual, Alaska Clean Seas has endeavored to provide the best available information based on the latest technological and engineering advancements. ACS believes that the information and procedures contained herein are well founded, and utilize information obtained from actual experiences in the environments where these procedures are intended to apply. Nonetheless, ACS and its members expressly disclaim that the procedures provided in this manual, even if followed correctly and competently, will necessarily produce any specific results. Implementation of the recommendations and procedures contained herein is at the sole risk of the user.

The *Alaska Clean Seas Technical Manual* provides a detailed source of information pertaining to spill response variables on the North Slope of Alaska. This information includes:

- Spill response tactics in a variety of conditions and seasonal variations.
- · Maps of resources at risk from a spill.

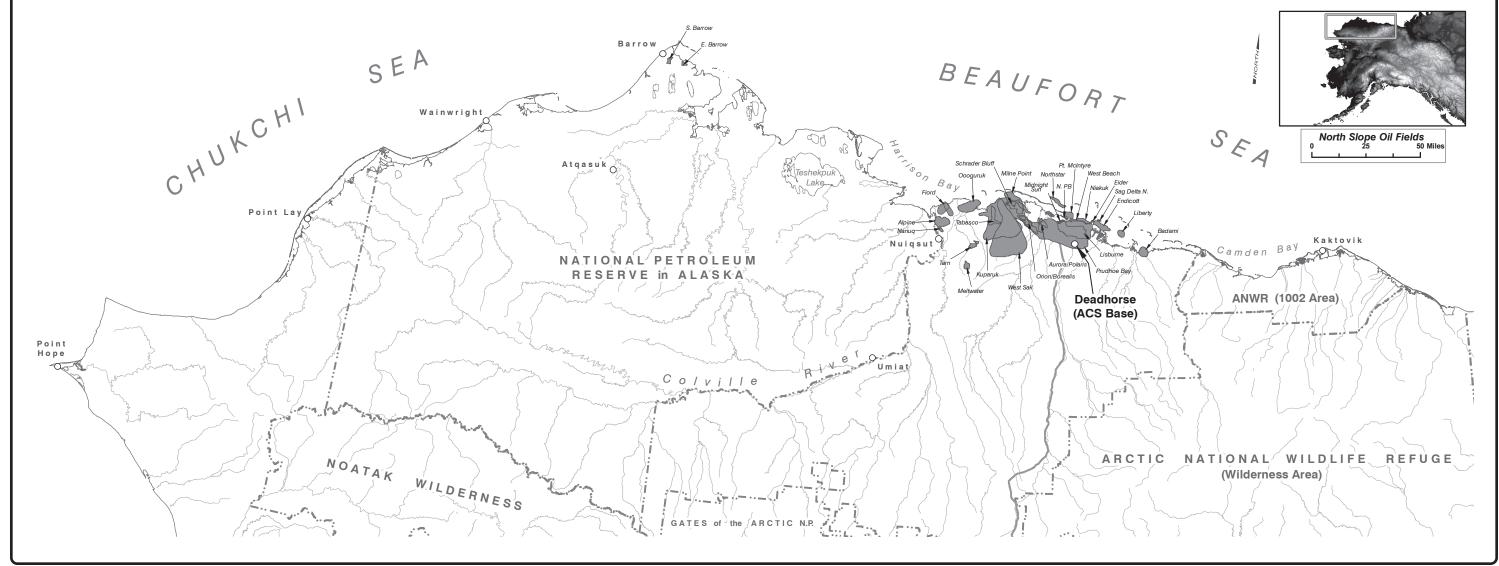
The *Technical Manual* is generally applicable to all operators on the North Slope. Facility-specific information is provided in operator oil discharge prevention and contingency plans. The information provided in this manual, in conjunction with the individual operator contingency plans, is intended to meet the requirements of Alaska Department of Environmental Conservation spill planning regulations (18 AAC 75).

There are always variables beyond the control of any response organization that affect response performance. These variables include personnel safety considerations, weather, visibility, sea conditions, location of spill, type of oil spilled, rate of discharge, condition of the equipment or facility causing the spill, and for a vessel, position of discharging vessel and condition of remaining cargo. In addition, site-specific conditions such as the amount and type of wildlife and sea mammals in or around the site, or the amount and nature of debris present, could interfere with response performance. Accordingly, it is not possible to guarantee response performance in exact accordance with the estimates, strategies or scenarios presented in this *Technical Manual* for planning purposes. For example, the safety of employees, contractor personnel, government representatives, and the public is of paramount importance and will override all other considerations in response operations.

FOREWORD

This tactics manual is the first volume of two manuals that make up the *Alaska Clean Seas Technical Manual* providing ACS member companies with a unified response plan for spills both onshore and offshore across the North Slope of Alaska from the Chukchi Sea eastward to the Canadian border and inland from Pump Station 1 to Pump Station 5 of the Trans-Alaska Pipeline System:

Volume 1: Tactics Descriptions


Volume 2: Map Atlas

The *Technical Manual* grew out of the work of the Industry/Agency North Slope Spill Response Project Team, which consists of government and industry personnel representing the following organizations: Alaska Clean Seas, Alaska Department of Environmental Conservation, Alyeska Pipeline Service Company, ARCO Alaska, Inc., BP Exploration (Alaska) Inc., North Slope Borough, U.S. Coast Guard, U.S. Environmental Protection Agency, and U.S. Minerals Management Service. This team was formed in the spring of 1997 in response to the concerns of both agencies and industry that spill response capability for the North Slope needed to be re-evaluated in light of proposed new offshore development such as Northstar and Liberty. Also, both agency and industry felt that industry should develop a unified North Slope response plan under the aus-

pices of Alaska Clean Seas. The Project Team was supported by the Tactics Team, consisting of technical representatives from agencies and industry. The Project Team developed nine scenarios covering a variety of spill situations, conditions, and seasons. The Tactics Team used the scenarios to develop tactics, which became the basis for the tactics descriptions in the *Technical Manual*.

This manual contains descriptions of the tactics that Alaska Clean Seas can use to respond to a spill. This manual is not intended to present all possible tactics for spill response. The tactics presented have been developed by ACS operations personnel and are the tactics they are prepared to use. Other tactics may be added, and these tactics revised as appropriate based on operational experience.

The tactics are designed to be used as building blocks for ACS member companies to develop facility-specific response scenarios in their contingency plans and for responders to develop response strategies for training and for spills. The technical information can be used to prepare a scenario that demonstrates the ability to recover the facility's response planning standard (RPS) volume in 72 hours — the key requirement of Alaska Department of Environmental Conservation contingency plan regulations.

Alaska Clean Seas Technical Manual Volume 1, Tactics Descriptions

REVISION FORM

Alaska Clean Seas requests that users of this manual provide notification of any errors or suggested revisions for use in future updates. If you would like to submit information, please photocopy this form and fill it out. The form is designed to copy easily onto an 8.5" x 11" sheet. Please send the completed form to:

Alaska Clean Seas Special Projects and Development Coordinator Pouch 340022 Prudhoe Bay, Alaska 99734-0022

> Phone: (907) 659-3207 Fax: (907) 659-2616

Tactic:	
Change:	
Source of Information for Change:	
Name of Person Submitting Change:	
Organization:	Telephone:
Date:	

Thank you for helping ACS maintain its Technical Manual up-to-date!

TACTIC

WE SPILL RECT. TO THE CONTROL OF TH		
ans Oko.	DIAGRAM	
)
	DESCRIPTION	

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME

CAPACITIES FOR PLANNING

HOW TO USE THE ACS TECHNICAL MANUAL VOLUME 1, TACTICS DESCRIPTIONS

The purpose of the ACS *Technical Manual* is to provide comprehensive response information in a uniform, user-friendly format accessible to both operations planning staff and regulatory agency C-Plan reviewers. This information is designed to be the basic building blocks upon which member company planners develop facility-specific C-Plans.

Volume 1, Tactics Descriptions, contains tactics arranged by subject as follows:

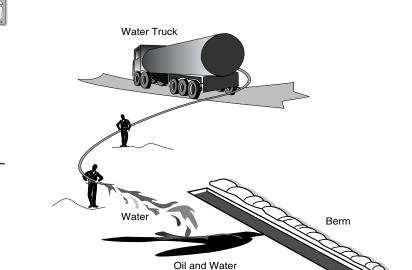
- Safety
- Containment
- · Recovery and Storage
- · Tracking and Surveillance
- Burning
- Dispersants
- Shoreline Cleanup
- · Wildlife and Sensitive Areas
- Disposal
- Logistics and Equipment
- Administration

Each tactic is numbered with a key letter to identify the subject: e.g., Tactic S-1 (Site Entry Procedures) is the first tactic in the safety section, while C-1 (Containment Using Snow Berm) is the first in the containment section. These numbers are useful for referencing in member-company response plans.

The figure on the following page shows a sample tactic and illustrates that each tactic consists of the following elements: a simplified diagram, a brief narrative description, an equipment and personnel table, a support equipment table, capacities for planning, and deployment considerations and limitations. Sufficient information is provided to allow the user to quickly see how the tactic is deployed and to identify the equipment and personnel needed to implement the tactic. The resource tables also provide storage locations for the equipment and estimated mobilization times and deployment times. These tables can be used to determine equipment needs and to develop response times for individual facilities.

"Base Location" is the location where the equipment is stored. "Mobe Time" is how long it takes to get the equipment out of storage at its base location, prepare it for operation, and make it ready to travel to the spill site. "Deploy Time" is how long it takes to make the equipment operational for its intended use once it arrives at the spill site. Deploy times are concurrent for equipment. Travel time is not included in the mobe and deploy times indicated in the "Equipment and Personnel" and "Support" tables, since travel times depends on the location of the spill and the mode of transportation. "Travel time" is how long it takes to transport equipment from the base location (after mobe) to the spill site (for deployment). For a given spill, this time may have multiple components (e.g., land and air transit), and it may be necessary to factor in additional time for transition between transport modes. Tactic L-3 contains tables of travel times.

The "Capacities for Planning" section of each tactic provides any additional information unique to the specific tactic. Planning capacities for calculating the volume recovered by commonly-used equipment in the ACS' and member-companies' inventories is located in Tactic L-6.



SAMPLE TACTICS DESCRIPTION

Tactics are numbered in series designated by a letter. This is the fourth tactic in the Recovery/Storage section.

Note that travel time is not included in the mobe and deploy times indicated in the "Equipment and Personnel" and "Support" tables, since travel time depends on the location of the spill and the mode of transportation. "Travel time" is how long it takes to transport equipment from the base location (after mobe) to the spill site (for deployment). For a given spill, this time may have multiple components (e.g., land and air transit), and it may be necessary to factor in additional time for transition between transport modes. Tactic L-3 contains tables of travel times.

TACTIC R-4 Flushing of Oil on Tundra Surface

FLOATING OIL WITHIN SHORE SEAL BOOM

Trench

deployment configuration for the tactic. Sometimes, more than one option is provided.

The illustration depicts a typical

A concise description of how the tactic is deployed is provided to explain the illustration.

The 11" x 17" format is designed so that the page can be copied as two 8.5" x 11" pages.

a nearby lake. Flushing usually occurs after pooled areas and contaminated snow have been removed.

The flush should consist of high-volume low-energy flushing with water less than 106°F.

The flush should consist of high-volume, low-energy flushing with water less than 106°F. This is essentially a mop-up technique after the majority of oil and oiled snow has been removed.

In spring or fall, flushing is used to concentrate oil into pits or trenches, where the oil is

collected with direct suction using a Manta Ray skimmer head, sorbents, or a portable

skimming system. The pits or trenches are constructed by cutting slots in ice, utilizing natural depressions, diagring into tundra or gravel with a backhoe or Bobcat, or by augmenting a

depression or pit with sandbags and Shore Seal boom (see Tactic C-4). Shore Seal boom

is particularly effective when frozen in place. Constructed pits or trenches are lined with

The water source for the flushing unit is either a water truck or an auger hole in the ice of

See Tactic R-7 for recovery of concentrated oil.

ACS Tech. Manual Vol. 1. 9/01

NOTE: All values given on these pages are for planning purposes only.

Flushing of Oil on Tundra Surface TACTIC R-4

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

ICS

EQUIPMENT AND PERSONNEL

• The number of staff to deploy sandbags depends on the size of the constructed concentration area.

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	NO. STAFF/SHIFT	MOBE TIME	DEPLOY TIME
	Water Truck	All	Water source	1	2	2 hr	0.5 hr
or	Upright Tank (400 bbl)	KRU, Alpine	Water source	1		2 hr	1 hr
	Ice Auger	PBW, PBE, KRU, ACS, Endicott, Alpine	Water source	1	2	1hr	0
	Trash Pump (2-inch)	All	Flushing of oil	1		1 hr	1 hr
	Suction Hose (2-inch)	All	Flushing of oil	≥20 ft	_	2 hr	1 hr 🐧
	Discharge Hose (3-inch)	All	Flushing of oil	≥50 ft	1	1 hr	1 hr

TOTAL STAFF

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	NO. STAFF/SHIFT	MOBE TIME	DEPLOY TIME
Tioga Heater	All	Support heavy equipment	≥1	1 initial setup	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Truck	All, except Badami	Support equipment	1	1	1 hr	0.5 hr
Lube Truck	All	Provide fluids to heavy equipment	1 Once per shift		1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr

CAPACITIES FOR PLANNING

- 2-inch trash pump operates at 312 bbl/hr nameplate capacity.
- · Recovery capacity depends on the nature of the spill, the size of the concentration area, and terrain features.
- For recovery rates from the pits or trenches, see recovery rates for portable skimmers and/or vacuum trucks.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- Flushing is a viable option only when air temperatures permit. Warm water (no more than 106°F) is preferred for flushing.
- Flushing works on oil contained on and in the surface of tundra, gravel, and ice, and is particularly effective on ice. The tundra can be damaged if it thaws; don't flush the same area more than 2 or 3 times and don't suck the tundra dry. Also, stay off the tundra that's being flushed.
- Personnel or small equipment should traverse the tundra on plywood sheets.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

NOTE: All values given on these pages are for planning purposes only.

ACS Tech. Manual Vol. 1, 03/03

"Base Location" is the location where the equipment is stored.
"Mobe Time" is how long it takes, to get the equipment out of storage at its base location, prepare it for operation, and make it ready to travel to the spill site. "Deploy Time" is how long it takes to make the equipment operational for its intended use once it arrives at the spill site. Deploy times are concurrent for equipment.

The equipment and support tables can be used to determine equipment needs and to develop response times for individual facilities.

The "Capacities for Planning" section provides the values that can be used to calculate the volume recovered by various pieces of equipment. The values presented are derated according to agency guidelines.

Various operational and environmental considerations are presented here.

CAN DEGRAPATION

SUGGESTIONS FOR PREPARING RESPONSE SCENARIOS BASED ON THIS MANUAL

TABLE 1 SCENARIO CONDITIONS

PARAMETER	PARAMETER CONDITIONS	PROJECT TEAM ASSUMPTION?
Spill Location:		
Spill Time:		
Source of Spill:		
Cause of Spill:		
Quantity of Spill:		
Type of Spilled Oil:		
Wind Speed:		
Wind Direction:		
Surface Current:		
Air Temperature:		
Visibility:		
Surface:		
Spill Trajectory:		

TABLE 2 RESPONSE STRATEGY

F	ADEC REQUIREMENT	RESPONSE STRATEGY	ACS TECHNICAL MANUAL TACTIC
(i)	Stopping Discharge at Source		
(ii)	Preventing or Controlling Fire Hazards		
(iii)	Well Control Plan		
(iv)	Surveillance and Tracking of Oil; Forecasting Shoreline Contact Points		
(v)	Exclusion Procedures; Protection of Sensitive Resources		
(vi)	Spill Containment and Control Actions		
(vii)	Spill Recovery Procedures		
(viii)	Lightering Procedures		
(ix)	Transfer and Storage of Recovered Oil/Water; Volume Estimating Procedure		
(x)	Plans, Procedures, and Locations for Temporary Storage and Disposal		
(xi)	Wildlife Protection Plan		
(xii)	Shoreline Cleanup Plan		

The tactics in this manual have been designed to serve as building blocks for operators to prepare facility-specific response scenarios in their oil discharge prevention and contingency plans. These scenarios can be written in a tabular format addressing the necessary ADEC requirements [18 AAC 75.425(1)(F)]. Table 1 provides the conditions for the scenario. As shown in Table 2, the scenario should provide the overall strategy for each step in the response and reference the appropriate ACS tactics that are used to build the response. The strategy descriptions in the second column should be brief and to the point.

Table 3 provides a suggested format for demonstrating that the chosen response strategy is capable of removing from water within 72 hours the facility's response planning standard volume. The data for these calculations can be found under each individual tactic in this tactics manual. Table 4 shows the liquid handling capacity of the tactics used in the scenario. Other tables may be appropriate based on the given scenario.

In addition to these strategy and calculation tables, the scenario should contain a description of the scenario conditions and at least one map showing how the tactics will be deployed.

TABLE 3 OIL RECOVERY CAPACITY

А	В	С	D	E	F	G
SPILL RECOVERY TACTIC	NUMBER OF SYSTEMS	RECOVERY SYSTEM	DERATED OIL RECOVERY RATE (boph)	MOBILIZATION, DEPLOYMENT AND TRANSIT TIME TO SITE (hours)	OPERATING TIME (hours in a 24-hour shift)	DAILY DERATED OIL RECOVERY CAPACITY (bpd) B X D X F

TABLE 4 LIQUID HANDLING CAPABILITY

Α	В	Н	1	J	K	L	M	N	0	Р
SPILL RECOVERY TACTIC	NUMBER OF STORAGE SYSTEMS	STORAGE CAPACITY DESCRIPTION	DERATED STORAGE CAPACITY VOLUME PER UNIT (bbl)	OIL & EMULSION AVAILABLE (bph)	TIME ON LOCATION BEFORE OFFLOAD NEEDED (hrs)	OFF- LOADING MECHANISM	OFF- LOADING RATE (boph)	TRANSIT TIME - BOTH WAYS (hrs)	OFFLOADING TIME (hrs)	OFFLOAD AND TRANSIT TIME (hrs)
					I/J				I/M	N+O

Acronyms **Acronyms**

AC	Alternating current
ACS	Alaska Clean Seas

ADEC Alaska Department of Environmental Conservation

ADF&G Alaska Department of Fish and Game ADNR Alaska Department of Natural Resources

AIC Alaska Interstate Construction

APR Air-purifying respirator

ARRT Alaska Regional Response Team

ATV All-terrain vehicle

BETRS Basic exchange telephone radio system

BOC **Base Operations Center**

bbl Barrels

bopd Barrels of oil per day bpd Barrels per day bph Barrels per hour

BPXA BP Exploration (Alaska) Inc.

CO Carbon monoxide

CPC Chemical protective clothing CTES C-band transportable earth station

DC Direct current

DOSH Department of Occupational Safety and Health (State of Alaska)

EmOC **Emergency operations center**

EOR Enhanced oil recovery

EPA U.S. Environmental Protection Agency

FAA **Federal Aviation Administration** FAR Federal aviation regulations **FLIR** Forward-looking infrared **FOSC** Federal On-Scene Coordinator

GC Gas chromatograph

GIS Geographic information system

GOR Gas-to-oil ratio **GPB Greater Prudhoe Bay** gpm Gallons per minute **GPS** Global positioning system

H,S Hydrogen sulfide HAK Hilcorp Alaska LLC HAZMAT Hazardous materials HF High frequency

HSE Health, safety, and environment

ICP Incident command post ICS **Incident Command System**

IDLH Immediately dangerous to life or health

ISB In-situ burning KRU **Kuparuk River Unit** LEL Lower explosive limit MEL Master equipment list

Million standard cubic feet per day mmscfd

MRC Mobile response center

MPU

MSDS Material safety data sheet

Milne Point Unit NFPA **National Fire Protection Association**

National Oceanic and Atmospheric Administration NOAA

NSB North Slope Borough

NSSRT North Slope Spill Response Team

OSC **On-Scene Coordinator**

Occupational Safety and Health Administration (Federal) **OSHA**

OSRB Offshore recovery barge OSRV Offshore recovery vessel

PABX Private Automatic Branch Exchange

PBE Eastern Operating Area (Prudhoe Bay Field) PBW Western Operating Area (Prudhoe Bay Field)

PBOC Prudhoe Bay Operations Center

PBU Prudhoe Bay Unit

PEL Permissible exposure limit PID Photoionization detector PPE Personal protective equipment psi Pounds per square inch

RCRA Resource Conservation and Recovery Act **RMOL** Realistic maximum operating limitations **RPS** Response Planning Standard (State of Alaska)

RRT Regional Response Team

SCAT Shoreline cleanup assessment team SCBA Self-contained breathing apparatus

scf Standard cubic feet

SOSC State On-Scene Coordinator SRT Spill Response Team SSB Single side band UHF Ultra high frequency **USCG**

USFWS United States Fish and Wildlife Service

United States Coast Guard

VHF Very high frequency

WCD Worst Case Discharge (Federal) TACTICS LIST (Page 1 of 4) (Page 2 of 4) TACTICS LIST

Rev. Date

Revised 07/16

Revised 03/12

Revised 03/12

Revised 03/12

Revised 01/15

Revised 07/16

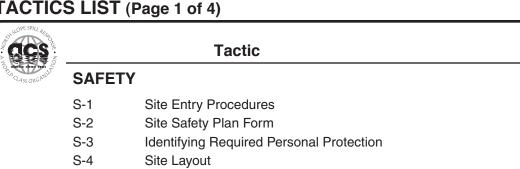
Revised 03/12

Revised 03/12

Revised 07/13

Revised 07/13

Revised 03/12


Revised 03/12

Revised 03/12

Revised 03/12

Revised 03/12

Revised 12/17

Air Monitoring for Personal Protection

Safety During Operations in Overflood Conditions

Containment on Ice with Trenches and Sumps

Deflection Booming in Open Water

Exclusion Booming in Open Water

Anchored W Deflection Boom

Recovery of Oil-Saturated Snow

Recovery of Embedded Oil

Recovery by Direct Suction

Recovery from Pit or Trench

Use of Sorbents

Flushing of Oil on Tundra Surface

Ground Thaw with Direct Suction

Containment Using U-Boom

Intertidal Booming

Trenching Ice to Direct Flow to a Containment Point

Gross Decontamination of Vessels

Decontamination

CONT		
C-1	Containment Using Snow Berm	Revised 07/13
C-2	Deflection Booming at a Culvert	Revised 03/12
C-3	Culvert Blocking	Revised 03/12
C-4	Barriers on Land	Revised 07/13
C-5	Deflection or Exclusion Booming on Lake or Tundra	Revised 03/12
C-6	Underflow Dam	Revised 07/13
C-7	Deadarm Trench on River Bank	Revised 07/13
C-8	Deflection Booming in Stream	Revised 03/12
C-9	Exclusion Booming on River	Revised 03/12
C-10	Containment Using Ice-Road Ring	Revised 01/15

C-18	Containing Light Layer of Oil on Snow Using Water Spray	Revised 07/13
C-19	Containing Oiled Snow Using Snow Fence	Revised 03/12
C-20	Containment of Pipeline Leak over Water	Original 07/13
C-21	Contain Oil Under Ice Using an Air Curtain	Original 07/16
RECOV	ERY AND STORAGE	
RECOV R-1	YERY AND STORAGE Mechanical Recovery of Lightly Oiled Snow	Revised 12/17
		Revised 12/17 Revised 12/17

RECOV	'ERY AND STORAGE (CONT'D)
R-12	Aggressive Breakup in River
R-13	Cutting Ice Slots for Recovery
R-14	Recovery of Oil under Ice
R-15	Anchored V-Boom to Skimmer
R-16	Hook Boom to Skimmer and Storage
R-17	J-Boom to Skimmer and Mini-Barge
R-18	U-Boom to Skimmer and Mini-Barge
R-19	J-Boom to Tank Barge
R-19A	Use of J-Booms in Broken Ice
R-20	U-Boom with Open Apex to Skimming System
R-21	Hot-Water, High-Pressure Washing of Solid Surfaces
R-22	Temporary Storage Options
R-23	Tank on Trailer (Fuel Tanker)
R-24	Hoses and Pumps in Series
R-25	Freighter Boat with Tank
R-26	Excavation and Storage of Oiled Gravel
R-27	Damaged Tank Transfer Procedures
R-28	Lightering/Offloading
R-29	Ice Mining
R-30	Recovery Using Diamond Boom for Subsea Pipeline Break
R-31	Free Skimming
R-32A	Single Boom-Arm Skimming
R-32B	Double Boom-Arm Skimming
R-33	Swift Water Recovery – Harbour Buster
TRACK	ING AND SURVEILLANCE
T-1	Delineation of Oiled Snow or Tundra
T-2	Mapping and Surveillance of Spill on Land
T-3	Detection and Delineation of Under-Ice Oil
T-4	Discharge Tracking in Open Water and Unmanned Aircraft
T-4A	Discharge Tracking Using Tracking Buoys
T-5	Trajectory Calculations
T-6	Blowout Modeling
T-7	Spill Volume Estimation
T-8	Remote Sensing of Oil in Ice Covered Waters
BURNII	NG
B-1	In-Situ Burning Plan
B-1A	In-Situ Burn Plan and Application Form
B-2	Burning Oily Vegetation
B-3	In-Situ Burning with Heli-torch and Other Igniters
B-4	Deployment and Use of Fire Containment Boom
B-5	Burning Oil Pools on Any Solid Surface
B-6	Burn Residue Recovery
B-7	Burn Extinguishment on Water
	<u>~</u>

Tactic

Fairchild Gate Weir Collection System

Decanting Separated Water in River

Use of Portable Skimmers with Pumps (River and Lake)

GCS oleske clean seas

Rev. Date

Revised 03/12

Revised 03/12 Revised 07/16

Revised 01/15

Revised 01/15

Revised 01/15

Revised 07/16

Revised 07/16 Revised 01/15 Revised 07/16 Revised 07/16

Revised 01/15 Revised 01/15 Revised 07/13

Revised 01/15 Revised 01/15 Revised 07/16

Revised 07/16 Revised 07/13

Revised 12/20

Revised 07/16

Revised 07/16

Revised 07/16

Revised 03/12

Revised 12/17 Revised 12/17 Revised 12/17

Revised 12/20 Revised 12/20 Revised 12/17 Revised 12/17 Revised 12/20 Revised 12/17

Revised 03/12

Revised 03/12

Revised 03/12

Revised 03/12

Revised 01/15

Revised 01/15

Revised 03/12

Revised 03/12

S-5

S-6

S-7

S-8

C-11

C-12

C-13

C-14

C-15

C-16

C-17

R-3 R-4

R-5

R-6

R-6A

R-7

R-8

R-9

R-10

R-11

TACTICS LIST (Page 3 of 4) (Page 4 of 4) TACTICS LIST

Rev. Date

Revised 07/16

Revised 12/20

Revised 12/20

Revised 12/20

Original 12/20

DT-2 DT-3	Dispersant Application Via Aircraft Dispersant Application Via Helicopter	Revised 07/16 Revised 07/16
SHORE	LINE CLEANUP	
SH-1	Shoreline Assessment	Revised 12/17
SH-2	Natural Recovery of an Oiled Shoreline	Revised 12/17
SH-3	Shoreline Cleanup Using Flooding and Flushing	Revised 12/17
SH-4	Shoreline Cleanup Using Steam Cleaning or Sand Blasting	Revised 12/17
SH-5	Shoreline Cleanup Using Manual Removal and	
	Vacuum Methods	Revised 12/17
SH-6	Shoreline Cleanup Using Mechanical Removal	Revised 12/17
SH-7	Shoreline Cleanup Using Sorbents and Vegetation Cutting	Revised 12/17
SH-8	Shoreline Cleanup Using Mechanical Tilling/Aeration	Revised 12/17
SH-9	Shoreline Cleanup Using Sediment Reworking and	
	Surf Washing	Revised 12/17
SH-10	Shoreline Cleanup Using Burning	Revised 12/17
SH-11	Biological/Chemical Shoreline Response Tactics	Revised 12/17
CH 10	Summary of Potential Impact of Sharelina Cleanus Tachniques	Povised 19/17

SH-12	Summary of Potential Impact of Shoreline Cleanup Techniques	Revised 12/17
WILDLIF		
W-1	Wildlife Protection Strategy and Permits	Revised 12/20
W-1A	Startup Wildlife Response Plan (from WPG 2020)	Original 12/20
W-1B	Comprehensive Wildlife Repsonse Plan (from WPG 2020)	Original 12/20
W-1C	RRT Contact Information for Wildlife Resource Agencies	Revised 12/20
W-1D	Forms for ESA Section 7 Consultation (from WPG 2020)	Original 12/20
W-2	Wildlife Hazing Equipment	Revised 12/20
W-2A	Mammal Hazing	Revised 12/20
W-2B	Bird Hazing	Revised 12/20
W-3	Wildlife Capture and Rehabilitation	Revised 12/20

Carcass Collection (from WPG 2020_

Identifying and Protecting Sensitive Areas

Wildlife Reconnaissance (from WPG 2020)

Deployment of ACS Mobile Wildlife Stabilization Center

	Tactic	Rev. Date				
DISPOS	DISPOSAL					
D-1	Processing Recovered Liquids	Revised 12/20				
D-2	Storage and Disposal of Non-Liquid Oily Wastes	Revised 12/20				
D-3	Disposal of Non-Oily Wastes	Revised 12/20				
D-4	Stockpiling Oiled Gravel	Revised 12/20				
D-5	Processing of Contaminated Snow/Ice	Revised 12/20				
LOGIST	FICS AND EQUIPMENT					
L-1	Ice Road Construction for Access to Winter Tundra Spill	Revised 12/17				
L-2	Staging Areas	Revised 12/17				
L-3	Deployment Strategies	Revised 12/17				
L-4	Logistical Support	Revised 12/17				
L-5	Communications	Revised 12/20				
L-6	ACS Response Equipment Specifications	Revised 12/20				
L-7	Realistic Maximum Operating Limitations	Revised 12/20				
L-8	North Slope Mutual Aid	Revised 12/20				
L-9	Accessing Contract Resources	Revised 12/20				
L-10	Accessing Non-Obligated Resources	Revised 12/20				
L-11	Best Available Technology Analysis	Revised 12/17				
L-11A	BAT Analysis: ACS Communications	Revised 12/17				
L-11B	BAT Analysis: Discharge Tracking and Trajectory Analyses	Revised 12/20				
L-11C	BAT Analysis: Wildlife Protection	Revised 12/17				
L-12	Logistical Support for On-Water Operations	Revised 12/17				
ADMIN	ISTRATION					
A-1	Emergency Action Checklist	Revised 12/17				
A-2	Spill Reporting Procedures	Revised 12/17				
A-3	ACS Pre-Approved Permits	Revised 12/20				
A-4	Training Requirements for Response Personnel	Revised 12/17				
A-5	ACS Certifications	Revised 12/20				
		1				

W-4

W-5

W-6

W-7

SAFETY IS THE FIRST PRIORITY IN THE RESPONSE TO ANY TYPE OF SPILL

Remember, it's not worth risking injury to anyone to clean up a spill. Safety protocols and procedures must be followed for any spill. *Proper hazard identification, hazard assessment, selection of appropriate personal protective equipment (PPE), personnel decontamination, and determination of appropriate safety and health practices take priority over all other spill response activities.*

LIMITS TO ENTRY

- No entry is authorized if the percentage of LEL exceeds 10% on a calibrated directreading explosive gas meter.
- No entry is authorized if the oxygen percentage exceeds 23.5%.
- In all cases, physical hazards of entry must be considered along with health hazards.

Key safety issues to consider in mobilizing a response effort are:

- Fire and explosion risk
- Chemical exposure potential
- Temperature extremes
- Safety of on-water or on-ice operations
- Other physical hazards

Not all hazards at an oil spill site are immediately apparent. A number of factors can be dangerous in the presence of an oil spill. Beware of the following:

- · Potential ignition ("hot") sources for fire/explosion
- · Smoking in the area
- Static electricity
- Escaping gas
- Unauthorized visitors (e.g., media)
- Undetected mechanical failures
- Spontaneous combustion
- Physical hazards (e.g., structural damage to pipeline or facilities)
- Chemical hazards (e.g., components in the oil, either naturally occurring or added, that are toxic to humans)

Effective spill response depends upon correct identification of the materials released. The Safety Officer will use his/her professional judgment to determine the following:

- Type of product or material released
- Physical state of material released (liquid, spray, solid, emulsified, mist, vapor, gas)
- Air concentration of material as compared to: 1) flammability range, 2) whether immediately dangerous to life or health (IDLH), 3) permissible exposure limit (PEL)*
- Hazards associated with material (e.g., flammability, toxicity, reactivity, corrosivity, health hazards)
- Weather conditions (e.g., prevailing winds, ambient temperatures, wind chill, relative humidity)
- Threat to human health and environmentally sensitive areas

In cases of release of an unknown material, the Safety Officer will assist with identification:

- Use available information such as labels, transport placards, NFPA, DOT Emergency Response Handbook, or bill of lading.
- · Take sample, using accepted EPA protocol.
- · If identified, consult material safety data sheet (MSDS) or operator's safety department.
- If no MSDS available, call CHEMTREC (1-800-424-9300 or 1-703-527-3887).

PRE-ENTRY SAFETY

The decision as to whether of not any given entry shall be attempted is ultimately the responsibility of the On Scene Commander with advice and guidance from:

- The Site Safety Officer (safety professional or experienced responder)
- The Emergency Response Leader
- The Environmental Team Leader

Steps to follow during the pre-entry phase to provide maximum safety to workers, the environment, and facilities:

- · Before any site activity, all known facts about the incident are discussed in a pre-entry briefing.
- · Known site hazards are identified.
- A Site Safety Officer makes a preliminary evaluation of a site's characteristics (hazards) before site entry.

The Site Safety Officer performing the initial assessment will:

- Determine if people are injured or trapped. If so, contact help as soon as possible.
- Delineate affected area (Hot and Warm Zones).
- Designate site as "Dangerous No Smoking."
- Stay upwind from spill.
- Restrict access to spill area to those involved in initial containment.
- Note any geographic hazards (cliffs, fast-moving water, ditches, etc.).
- · Consider the need for the following: protective gear, decontamination, site control, and safety equipment.
- Gather any and all pertinent data (begin evaluation).

SITE ENTRY

Immediately after the initial site entry, a more detailed evaluation of the site's specific characteristics is completed in order to further identify existing hazards and aid in the selection of appropriate PPE.

Below are three levels of protection for entry into varying conditions listed in descending order of protection. It is required to consult with a "competent person" for job specific PPE requirements. (Note: The recommended levels below reflect a 12-hour shift. All employees must have had the necessary training pertaining to their tasks prior to entering any site. In addition, these guidelines are for crude oil and petroleum spills; other criteria apply to hazmat spills).

- 1. Entry by one or more workers with SCBA and a single backup observer also equipped with SCBA is allowed under the following conditions:
 - Oxygen atmospheric concentration is less than 23.5%.
 - · LEL percentage is less than 10% as measured by a calibrated direct-reading hand-held instrument.
- 2. Entry with full-face air purifying respirator and organic vapor cartridges is allowed by any number of workers without backup observers under all of the following conditions:
 - Oxygen atmospheric concentration is between 19.5% and 23.5%.
 - LEL percentage is less than 3%.
 - Total hydrocarbon concentration is less than 500 ppm.
 - H₂S air concentration is less than 10 ppm.
 - Benzene air concentration is less than 15 ppm.
 - · Normal natural or mechanical ventilation is available.
 - No visible mist or fog of oil present.
- 3. Entry with half-face air purifying respirator and organic vapor cartridges is allowed by any number of workers without backup observers under all of the following conditions:
 - Oxygen atmospheric concentration is between 19.5% and 23.5%.
 - LEL percentage is less than 3%.
 - Total hydrocarbon concentration is less than 500 ppm.
 - H_oS air concentration is less than 10 ppm.
 - Benzene air concentration is less than 3 ppm.
 - Normal natural or mechanical ventilation is available.
 - No visible mist or fog of oil present.

^{*}The PEL is 5 mg/m³ for particulate oil in air (e.g., from a high-pressure release of oil), and the PEL is 0.6 ppm for benzene in oil. In addition, oil may contain methanol and xylene from injection at the wellbore.

- . Entry without respiratory protection is allowed for any work required under all of the following conditions:
- Oxygen atmospheric concentration is between 19.5% and 23.5%.
- LEL percentage is less than 3%.
- Total hydrocarbon concentration is less than 50 ppm.
- H_oS air concentration is less 10 ppm.
- Benzene air concentration is less than 0.3 ppm.
- Normal natural or mechanical ventilation is available.
- · No visible mist or fog of oil is present.

Note: In environments with excess dust and debris, an organic vapor / particulate filter is recommended (OV/HEPA)

DOCUMENTATION

Careful and complete documentation of planning, procedures, and implementation of spill response activities is critical for two main reasons. Federal OSHA and State of Alaska DOSH regulations require certain record-keeping. Also, knowing what's been done in the past can help prevent problems and increase cleanup and safety effectiveness in the future. The following records should be available either on site or in personnel files:

- · Initial site assessment information
- Site safety plan
- Personnel training records
- Site safety briefings
- Paperwork for exposure badges and air monitoring logs
- Accident reports
- Medical monitoring records

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

CONSIDER ALL SPILLS TO BE HAZARDOUS

- · Always approach a spill from an upwind direction.
- Avoid direct or indirect body contact with the spilled material.
- Remove all potential ignition sources from immediate area.
- Shut down all powered equipment until Safety Officer approves operation.
- Restrict access to spill area to those involved in initial containment and cleanup activity.
- Do not approach materials producing gases or vapors until identification is possible and hazards are known.
- Maintain constant observation of personnel for indications of hypothermia and/or frostbite.
- Follow procedures to avoid slips, trips, and falls, especially in ice and snow conditions.

IF A PROFESSIONAL OPINION IS NEEDED CALL THE IH OR SAFETY REPRESENTATIVE

- A trained person using properly calibrated equipment must conduct air monitoring.
- If permissible entry conditions change outside of allowable criteria during entry, the entry must be terminated.
- If a worker is splashed with crude oil, remove clothing and wash affected skin area.
- If eyes are splashed rinse for at least 15 minutes and get medical attention.

PERSONAL PROTECTIVE EQUIPMENT (PPE) REQUIRED FOR RESPONDERS TO A CRUDE OIL RELEASE

- Appropriate respiratory equipment (see above)
- Appropriate gloves (nitrile, butyl rubber, or Viton), boots, and full-body-covering suits (Level A, B, C)
- Safety glasses or goggles, and a hard hat
- Appropriate dress for cold weather, as necessary
- Steel-toed footwear or arctic boots in cold weather; ice cleats as necessary
- Fire-retardant clothing if within 50 feet of a process area
- Personal flotation devices, as necessary

ICE ENTRY GUIDELINES

Conduct a thorough assessment of ice conditions in the area of response operations and supporting functions. Profile the ice with an ice auger or profiling drill. Profiling teams should work from the shoreline, from grounded ice, or from known solid ice. It is recommended that profiling teams wear PFDs (Personal Flotation Devices) and body harnesses with safety lines. Line tenders should work from a safe location.

Profile borehole locations should be numbered and recorded on a site diagram or map of the area. Incoming personnel should be briefed on safe area and traffic routes and the site should be reassessed as necessary. Maintain heightened awareness during periods of severe or changing weather and large swings in temperature.

Maintain a written log of the following information:

- Date and time
- Borehole number
- Ice description (clear, cracks, rotten)
- Temperature
- Ice thickness
- Freeboard
- Water depth
- Equipment types and weights allowed on ice
- Parking distance between vehicles and equipment

Ice profiling teams with body harnesses and safety lines to check for ice thickness and conditions.

Approved traffic lanes for vehicles and safe walking pathways for personnel should be clearly marked and maintained. Sand, gravel or nut plug may be necessary on foot paths. Vehicle speed limits must be clearly posted and strictly enforced.

A detailed Job Hazard Analysis may be required when working on non-grounded ice. See Tactic L-7 Realistic Maximum Operating Limitations (RMOL) for ice thickness, strength and load bearing recommendations.

Snow covered flow lines can create hidden thaw pockets that can cave in under the weight of personnel. Use avalanche probes to test snow thickness before personnel are permitted into the area. Continue to monitor these areas to stay aware of changes.

Snow-covered flowlines may create thaw pockets that can cave in under the weight of personnel.

SET SET SPILL REIGH	075
	7
(LASS ORGA)	

		NORTI	H SLOPE	SIT	E HEALTH & SA	AFETY PLAN			
Incident Name:							Date	e Prepared:	
Incident Location:				3 			Time	e Prepared:	
City Cofee, Officer		****		lon s	scene Commander:				
Site Safety Officer:				011-3	scene Commander.				
(1) TYPE OF INCIDENT	_		(2) E	NTRY	OBJECTIVES (Refer	To ICS-201, 202)			
Personal Injury/Medical Explosion Spill Collision Other	☐ Gas ☐ Well ☐ Terro	Release Control orism ned Event		Reso Spill Acco	te and Control Entry sue Victims/Evacuation Cleanup unt for Personnel ce Control	or Shelter in Place		Reconnaissance Fire Suppression Special Procedu	
(3) HAZARD IDENTIFICATIO	N/EVAL	JATION (Refer to ICS	i-204S)						
Chemical Properties Name: Est. Amount: State (Liquid, Gas, Solid) Spec. Gravity/Vapor/Density	Expl	osive? c? IDLH: P osive? DOT/UN# ctive? DOT Hazard Gu inogen?	LEL Range: 	Phys	Electrical Pressure Momentum/Gravity Residual/Stored Ene Special High Temperature Energy Isolation and	ergy	Spe	Confined Space	Implemented? Implemented? Medical Issues?
Water Soluble?	☐ Hum	at To: an Health at Risk?	_		Verified? Vibration	YES/NO		Elevated Area Limited Access	
MSDS on Hand?	∐ Envi	ronmental Sensitive A	reas at Risk?		Noise Heat or Cold Stress			Below Grade (pi Offshore Structu Land Structure	
(4) SITE INFORMATION (Re	er to ICS	-201-5)		(5) W	EATHER/ENVIRONM	ENTAL		Land Otructure	
Safe Access Route to the Site		Control Zones Establis 201 Site Map.	shed on	Curr Air T		Wind Speed:	/mpł	n Humidity	:
Command Post Location:	Excl	usion Zone Line:		Preci Fore	pitation: <u>cast</u>	Time:	Wind Date	d Direction: e:	
Medical Located:	Cont	amination Reduction 2	Zone Line:	Air T	emp: pitation:	Wind Speed:	/mph Wind	n Humidity d Direction:	:
Site Control:	Supp	oort Zone Line:			Water Conditions State 1-2-3-4-5-6 Fee	et. Maximum	Avei	rage Wave Height:	Feet.
Site Org. Level: (ICS-204)	 Traff	ic Pattern Established	?	Curre		ent Speed: kno	ts Curr	ent Direction:	
YES/NO (6) SAFETY PROCEDURES	(7) R	YES/NO OUTE OF EXPOSUR	 E	1. 0.0.			(8) N	IONITORING	
SPECIAL ENTRY PROCEDURE (Refer to ICS-206)		Inhalation					Area		
Pre-Entry Vitals Taken by Medic	al 🗆	Ingestion							Frequency
Post-Entry Vitals Taken by Medi	al 🔲	Eye Contact					Оху	gen	Y/N
Comments:		Dermal					-1	n. Gas	Y/N
(A) THA BULL	— ⁽¹⁰⁾	PERSONAL PROTEC					H2S		Y/N
(9) TRAINING					Zone (Hot)		Benz		Y/N
Response Training Require	- 1	Head/Eye Res		Body		Foot PFD	CO2		Y/N
ments Have Been Identified						· · · · · · · · · · · · · · · · · · ·		ocarbon	Y/N
Comments:		C) (See Section 19, De		Safe	ty or Industrial H	Y/N ygienist:
Prepared By:	1			_ Appr	oved By:				
Site Sa	fety Offic	er Da	ate/Time		(On-Scene Commande	er		Date/Time

(4) COMMUNICATIONS DADIO	(12) VISUAL/SIGNS	(13) HAND SIGNALS	~35.0
11) COMMUNICATIONS RADIO	l. ,	(13) HAND SIGNALS	
Radio Communication Plan Implemented?	☐ Entry Team Briefing Conducted ☐ Buddy System		l
Command Channel:	☐ Buddy System ☐ Leader/Team Site Rules		
Command Channel:	Established		
	Emergency Signals Verified with		
Emergency Call:	All Team Members	Evacuate Assist w/ Repairs Out of Air	Other
(Band Aid - Band Aid - Band Aid)	Other:		
☐ Bull Horns			
SCBA Communication		1:1:1	
		1 	
In-Suit Communication		Need Help Cannot See O.K.	Other
14) SITE EMERGENCY EQUIPMENT	(15) RESCUE/MEDICAL	(16) ESCAPE/EVACUATION	7 0.
ist special equipment required	List Special Rescue or Medical	Safe Refuge Area Established for Exclusion	Zone & for
Equipment Location	Equipment/Unit Location	Location:	
		Escape/ Evacuation Alarm/Signal:	
		Entry Team Escape Route:	
		☐ Criteria for Required Evacuation Established	?t
		(wind change, IDLH conditions, etc.)	
17) DECONTAMINATION (CORRIDOR)	(18) DECON WORKER PPE LEVEL		
☐ Decontamination Plan Established?	Head/Eye Respiratory	Body Gloves Foot	PFD
Decon Solution	□ A		
Decontamination Control Marked on ICS-	В		
201 Site Map?	□ c		
Standard Decontamination Layout? Y/N	□ D		
Standard Booomammation Edyout. 1770			
	-		I
Emergency Decon Procedure (Gross Flushing)	NOTE: Decon personnel to be protected at the	ne same level or one level below Exclusion Zone entry perso	nnel.
19) ORGANIZATIONAL PLAN &	(20) ATTACHMENTS (ICS Forms, Ma	ans Photos etc.)	
NITIAL BRIEFING	(20) ATTAOTIMENTO (100 Tottilis, Mic	10003, 000.)	
Organizational Plan/Position Designations			
Complete? (Refer to ICS-201, 203, 204)			
☐ Incident Action Plan Established?			
(Refer to ICS-Forms, I.A.P.)			
All Positions Track and Record Actions			
(Refer to ICS-214) Unit Log	4_	П	
21) DEMOBILIZATION	L		
☐ Demobilization Safety Procedures	lm	П	
Established?			
	In		
	-	U	
22) ADDITIONAL COMMENTS:			
			ŀ
			ļ
			- 1
			ļ
Prepared By:	Approved By:		
Site Safety Officer	Date/Time	On-Scene Commander Date/Time	

LEVEL A

LEVEL B

LEVEL D

Personal protective equipment (PPE) is designed to protect workers from safety and health hazards and prevent injury resulting from incorrect use and/or malfunction of equipment. In general, the greater the level of PPE required. PPE includes:

- Respirators: SCBA, air-purifying respirator
- Full body covering including nitrile, butyl rubber, or Viton gloves and boots
- Safety glasses or goggles
- Hard hat
- Cold weather gear, including steel-toed footwear or arctic boots
- Hearing protection

PPE is divided into four categories based on the level of personal protection afforded.

- Level A provides the greatest level of skin, respiratory and eye protection.
- Level B offers the highest level of respiratory protection but lesser level of skin protection (e.g., skin protection is required for exposure to liquids but not vapor).
- Level C is used when concentrations and types of airborne substances are known and the criteria for using air-purifying respirators are met.
- Level D consists of work clothing affording minimal protection, used for nuisance contamination only.

Most spill-site workers will use Levels C and D.

EQUIPMENT

LEVEL A

- SCBA, or positive-pressure supplied-air respirator with escape SCBA
- · Totally encapsulating chemical-protective suit with vapor barrier
- Coveralls*
- Long underwear*
- · Gloves, outer, chemical resistant
- · Gloves, inner, chemical resistant
- · Boots, chemical resistant, steel toe and shank
- Hard hat (under suit)*
- Disposable protective suit, gloves and boots (may be worn over or under encapsulating suit depending on suit design)

LEVEL B

- SCBA, or positive-pressure supplied-air respirator with escape SCBA
- Hooded chemical-resistant clothing (overalls and long-sleeved jacket coveralls; one- or two-piece chemical splash suit; disposable chemical-resistant overalls). May also be encapsulating.
- Coveralls*
- · Gloves, outer, chemical resistant
- · Gloves, inner, chemical resistant
- Boots, chemical resistant, steel toe and shank
- Boot covers, outer, chemical resistant, disposable*
- Hard hat*
- Face shield*

LEVEL C

- Full-face or half-mask air-purifying respirators with appropriate cartridges
- Hooded chemical-resistant clothing (overalls; two-piece chemical-splash suit; disposable chemical-resistant overalls.)
- Coveralls*
- · Gloves, outer, chemical resistant
- Gloves, inner, chemical resistant
- Boots, chemical resistant, steel toe and shank
- Boot covers, outer, chemical resistant, disposable*
- Hard hat*
- Escape mask*
- Face shield*

LEVEL D

- Coveralls
- Gloves*
- Boots/shoes, chemical resistant, steel toe and shank
- Boots, outer, chemical resistant, disposable*
- Safety glasses or chemical splash goggles
- Hard hat
- Escape mask*
- Face shield*

^{*} Optional

GUIDELINES FOR PPE

RESPIRATORY:

A NIOSH approved air purifying respirator with an organic vapor cartridge may be used under conditions where airborne concentrations are expected to exceed permissible exposure limits. All employees need to be fit tested for the particular brand and model they will be expected to use.

A Respiratory Protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.

SKIN:

The use of gloves impervious to the specific material handled is advised to prevent skin contact, possible irritation, absorption, and skin damage.

Recommended Use: Depending on conditions the use of aprons and or arm covers may be necessary.

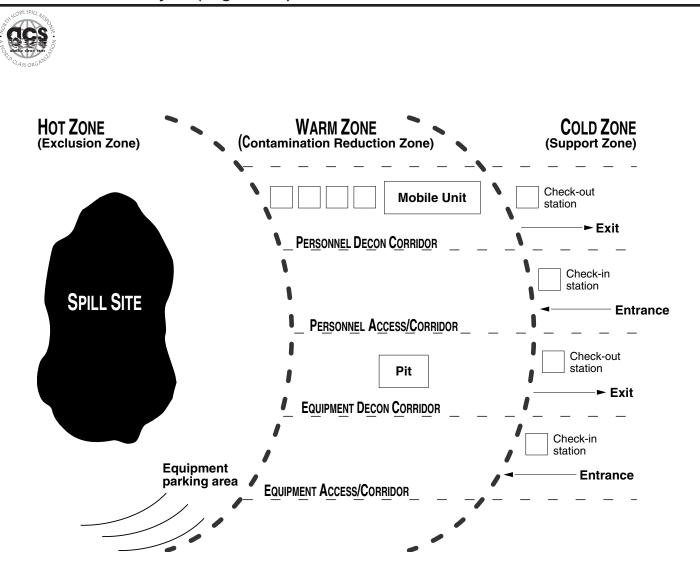
Note: These are just recommendations; each company may purchase and use their PPE of choice. Below is a simple guideline for petroleum PPE selection. It is still necessary for a "competent person" to determine PPE usage for each specific response incident. Surgical grade gloves are not a recommended substitution for industrial use chemical protective gloves. Read the manufacturers recommended application before using any product.

GLOVE MATERIAL	GENERAL USES
Butyl	Offers the highest resistance to permeation by most gases and water vapor. Especially suitable for use with esters and ketones. Poor for aliphatic, aromatic hydrocarbons, halogenated hydrocarbons, and gasoline.
Neoprene	Good for acids and bases, peroxides, fuels, hydrocarbons, alcohols, phenols. Poor for halogenated and aromatic hydrocarbons
Nitrile	Excellent general duty glove. Provides protection from a wide variety of solvents, oils, petroleum products, and some corrosives. Excellent resistance to cuts, snags, punctures, and abrasions
PVC	Provides excellent abrasion resistance and protection from most fats, acids, and petroleum hydrocarbons. Poor for most organics (consult a competent person prior to use).
PVA	Highly impermeable to gases. Excellent protection from aromatic and chlorinated solvents. Cannot be used in water or water-based solutions.
Viton	Exceptional resistance to chlorinated and aromatic solvents. Good resistance to cuts and abrasions.
Silver Shield	Resists a wide variety of toxic and hazardous chemicals. Provides the highest level of overall chemical resistance.
4H	Same as Silver Shield, but offers better dexterity.
Natural (Latex) rubber	Good for very dilute acids and bases. Poor for organics (consult a competent person prior to use).

EYE/FACE:

Approved eye protection to safeguard against potential eye contact, irritation, or injury is recommended. Depending on conditions the use of a face shield over safety glasses or goggles may be necessary.

OTHER PROTECTIVE EQUIPMENT:


It is recommended that protective clothing be worn when skin contact is possible such as:

- Tyvek (light duty clean up)
- Saranex
- Dupont level "B"

It is required to consult with a "competent person" for job specific PPE requirements. Eye wash and quick drench shower facilities should be available in the work area. Thoroughly clean shoes and wash contaminated clothing before reuse.

THIS PAGE DELIBERATELY LEFT BLANK

Control boundaries must be established for any spill site to ensure that people are not exposed to the spilled substance:

- Exclusion or Hot Zone Control zone perimeter established by the Safety Officer where pre-site entry and site entry procedures are applied (see Tactics S-1 and S-2)
- Contamination Reduction or Warm Zone Workers shed contaminated clothing; allows for equipment and personnel decontamination.
- **Support or Cold Zone** No contamination. Zone has support facilities, staging area, warm-up trailer, and mobile command post.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Dry Decon Unit	All	Decontamination	1	4	1 hr	1 hr
Wet Decon Unit	GPB, KRU, Alpine	Decontamination	1	4	1 hr	1 hr
Decon Pits	ACS, KRU	Decontamination	2	3 initial	1 hr	1 hr
Portable Decon Berms	All	Decontamination	<u>≤</u> 10	_	1 hr	0.5 hr
Manual Decon Equipment (e.g., scrub brushes, sorbents, sprayers, etc.)	All	Decontamination	_	_	1 hr	0.5 hr

TOTAL STAFF FOR SETUP 7
TOTAL STAFF TO SUSTAIN OPERATIONS 4

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Water Truck	All	Water	1	2	2 hr	0.5 hr
Vacuum Truck	All	Wastewater removal	1	2	1 hr	0.5 hr
Light Plant	All	Illumination	<u>≥</u> 1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr

See Tactic L-2 for additional support equipment.

COLORIMETRIC **TUBE**

PERSONAL MONITOR BADGE

CHIP MEASUREMENT

SYSTEM (CMS) METER

PHOTOIONIZATION DETECTOR (PID)

It is critical that workers know what substances comprise a spill so they can take appropriate precautions. While the initial assessment and entry are done by a trained Safety Officer, it is important for all workers to be familiar with the process and equipment used to assess and monitor the hazardous materials at a spill site.

When the potential for both known and unknown hazards exists, air monitoring procedures must be followed.

- 1. Monitor with direct-reading test equipment (i.e., combustible gas meters, flame ionization and photoionization detectors) for IDLH conditions, oxygen deficiency, explosive atmosphere, and toxic substances.
- 2. Implement on-going air monitoring. Continuous monitoring is important since conditions can change due to spill progression, weather and other factors.

Gas instruments: Safety Officer uses these to determine site entry and PPE needed:

- 1. Multi-gas instrument: "four gas" Monitors oxygen, LEL, H,S and carbon monoxide
- 2. Single gas instrument e.g., H₂S
- 3. Chip measurement system (CMS) meter

Photoionization Detector (PID): Used to detect total hydrocarbons and in some cases, specific chemicals such as benzene. Accuracy ± 5%.

Colorimetric Tubes: Used to detect specific chemicals and levels of toxicity. Portable. No power needed. Accuracy

Personal Monitor Badge: Worn by the individual to check exposure to certain chemicals; record required.

ACS has a calibration, inspection, and maintenance program for the above equipment.

Air Monitoring for Personal Protection (Page 2 of 2) TACTIC S-5

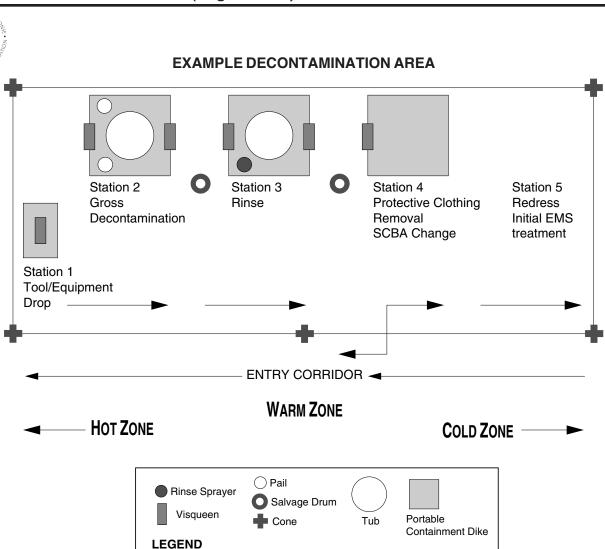
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Single-Gas Instrument	All	Testing	1	1	0.5 hr	0.5 hr
Multi-Gas Instrument	All	Testing	1	1	0.5 hr	0.5 hr
Draeger Tubes	All	Testing	1	1	0.5 hr	0.5 hr
Personal Monitor Badge	All	Testing	1	1	0.5 hr	0.5 hr
PID	All, except Badami	Testing	1	1	0.5 hr	0.5 hr
Portable GC	All, except Badami	Testing	1	1	1 hr	1 hr

TOTAL STAFF

≥1, increasing incrementally with the size of the incident


DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

MONITORING

MONITORING EQUIPMENT	HAZARD	LEVEL	ACTION		
Oxygen Meter	No O ₂ or too much O ₂	<19.5%	Monitor wearing SCBA with escape bottle. NOTE: combustible gas readings not valid in atmospheres <19.5% oxygen.		
		19.5-23.5%	Continue monitoring with caution. SCBA not needed based only on oxygen content.		
>2:		>23.5%	STOP monitoring. Fire potential! Consult specialist.		
Combustible Gas	Explosion	≥10% LEL	Withdraw immediately!!!!		
H ₂ S Meter	·		Use SCBA and have emergency escape breathing apparatus (5 min. minimum).		
PID Total Hydrocarbons		≥500 ppm	SCBA required.		
	_	≥50 to <500ppm	Air-purifying respirator with organic vapor cartridges.		
PID	Benzene	≥10 ppm	SCBA required.		
		<15 ppm	Full-face air-purifying respirator with organic vapor cartridges.		
		<3 ppm	Half-face air-purifying respirator with organic vapor cartridges.		
		<0.3 ppm	Continue monitoring with caution.		
PID or Colorimetric	Xylene	>100 ppm	Full-face air-purifying respirator with organic vapor cartridges.		
Tubes		<100 ppm	Continue monitoring with caution.		
Colorimetric Tubes	Methanol	>200 ppm	SCBA required.		
		<200 ppm	Continue monitoring with caution.		
Colorimetric Organic, Depends on Inorganic chemical Meter Gases, vapors		'	Consult reference manuals for air concentration vs. toxicity data		

- · During monitoring operations, if the instrument operator is uncertain of the significance of a reading, especially if conditions could be unsafe, a technical specialist should be consulted immediately. Consideration should be given to withdrawing personnel from the area until the Safety Officer's approval is given to continue operations.
- Methanol is present in most oil field chemicals. Examples include scale inhibitor and corrosion inhibitor.

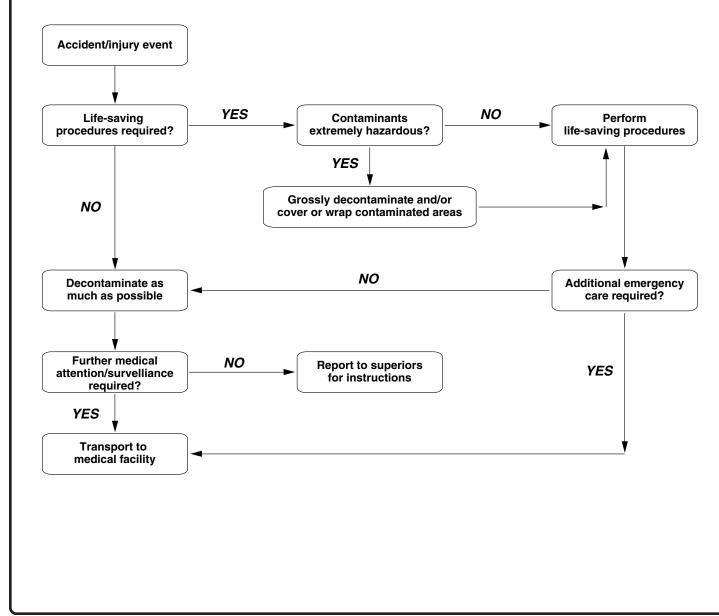
acs

Decontamination involves the removal of oil or other contaminants from personnel or equipment after they leave the spill zone. The purposes of decontamination are to:

- · Minimize worker contact with contaminants.
- Prevent spread of contaminants to clean areas and exposure to personnel there.
- Remove contaminants from equipment to allow its reuse.

Site classification zones (cold, warm, hot) must be established prior to setting up the decon area. A decon area must be established before response personnel enter the exclusion zone (hot zone). Decon methods should be determined according to the contaminant, PPE used, and environmental conditions at the time (temperature, location, etc.). An appropriate level of PPE should be worn by decon personal to avoid contaminating themselves. All decontamination areas will provide an effective method of decon such as:

- Dilution
- Absorption
- Chemical degradation
- · Isolation and disposal



The decontamination plan must be part of the site health and safety plan.

The decontamination zone is the control point for personnel entering and leaving the spill area. Important issues for decon setup include the following:

- Containment, collection, disposal of contaminated solutions and wastes generated from decon.
- Separate decon setups for heavy equipment and machinery to prevent cross-contamination of personnel.
- Separation of decon stations to prevent personnel cross-contamination.
- Distinct entry and exit points, and physically separated entry paths into contaminated area from clean area and vice versa.
- Procedures for minimum decon for restroom use and medical emergencies.
- Location of medical/first aid stations to avoid exposure to contaminants.

DECISION CHART FOR EMERGENCY DECONTAMINATION

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Wash Tubs	All	Decontamination	<u>≥</u> 3	6	0.5 hr	0.5 hr
Portable Decon Berm	All	Decontamination	≥4	_	1 hr	0.5 hr
Galvanized Bucket	All	Decontamination	≥2	_	0.5 hr	0.5 hr
Sprayer	All	Decontamination	≥2	_	1 hr	0.5 hr
Salvage Drum	All	Decontamination	≥2	_	0.5 hr	0.5 hr
Traffic Cone	All	Designate decon area	≥4	_	0.5 hr	0.5 hr
Caution Tape	All	Designate decon area	≥2 rolls	_	0.5 hr	0.5 hr
Visqueen	All	Decon area	≥1 roll	_	1 hr	1 hr

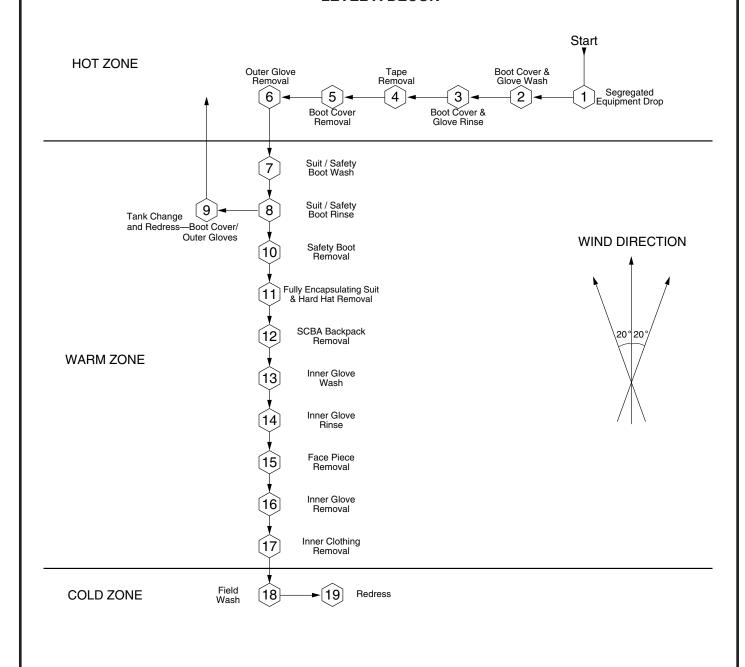
TOTAL STAFF

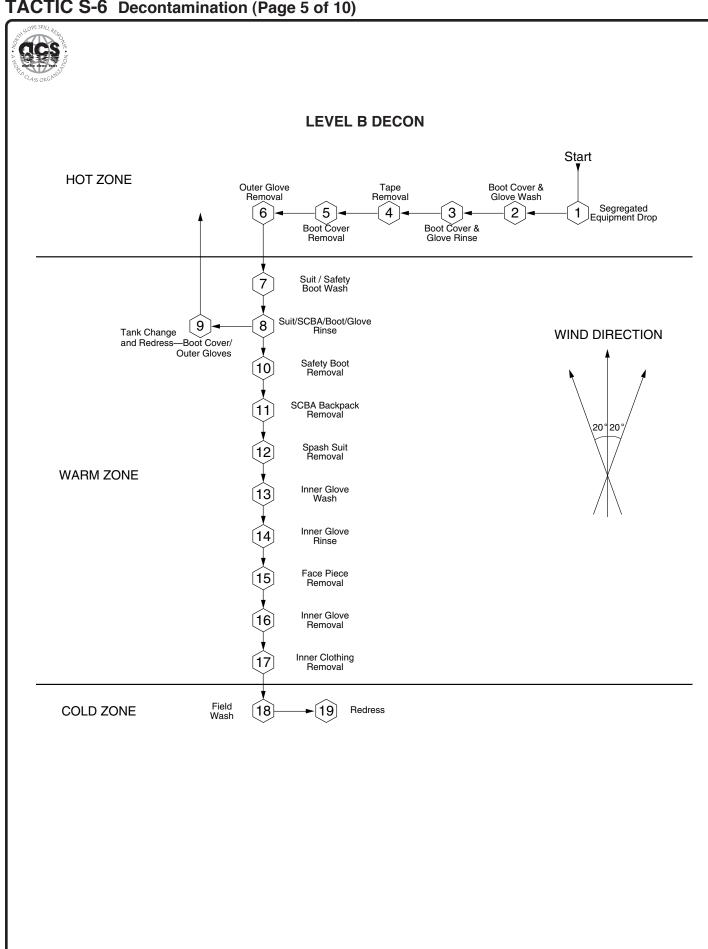
SUPPORT

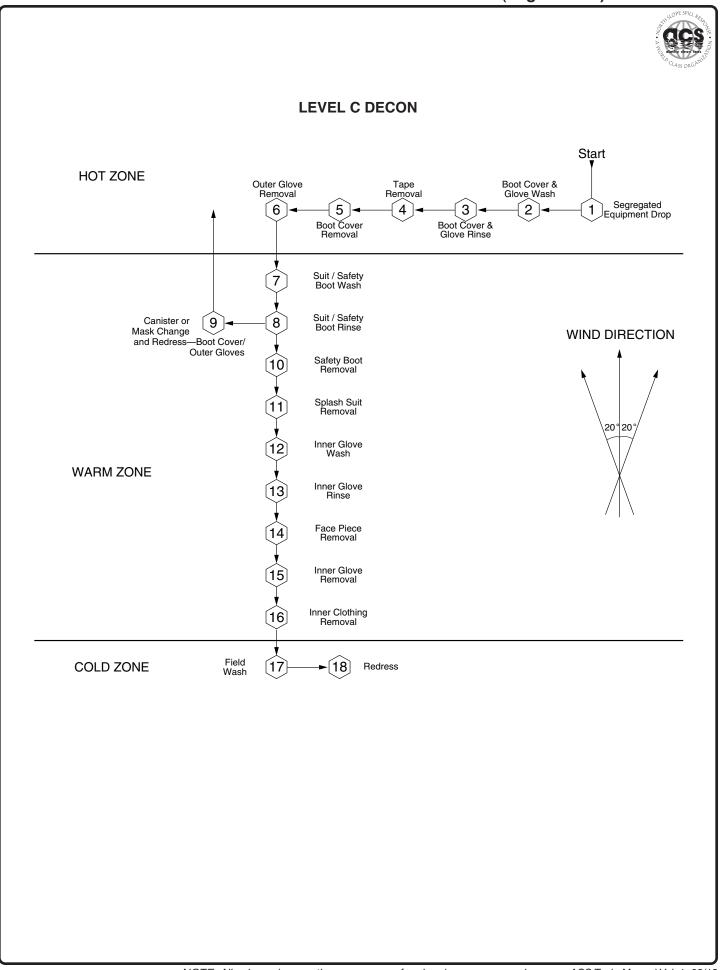
EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Oily Waste Dumpster	North Slope Borough	Waste receptacle	1	1 initial	1 hr	0.5 hr
Light Plant	All	Illumination	1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	1 hr

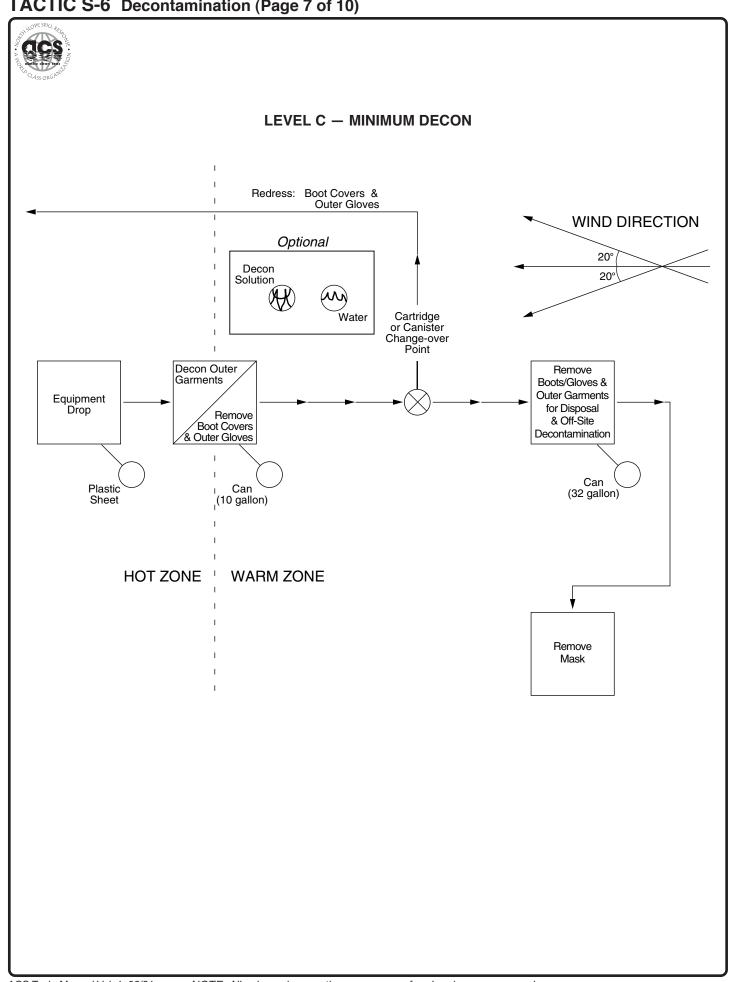
DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

Establish decon work practices to minimize contact with hazardous materials:

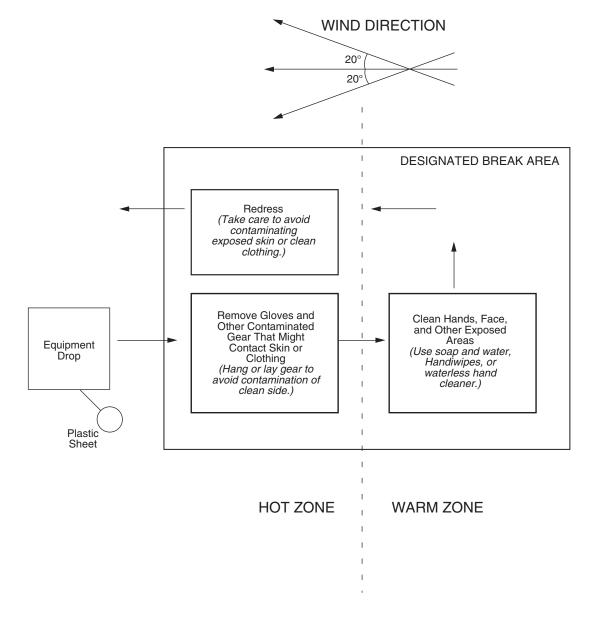

- Stress extra steps to avoid contact with or handling of contaminants.
- Wrap sampling/monitoring equipment in disposable see-through plastic bags.
- Use disposable protective clothing and equipment [personal protective equipment (PPE), chemical-protective clothing (CPC)] where possible.
- Use strippable coatings for equipment where possible.
- Use double containerization of contaminated wastes and recovered materials (e.g., plastic liners in overpack
- Inspect all CPC for cuts, tears, punctures, abrasions, and other signs of deterioration.
- Assure proper fastening and sealing of CPC and PPE.
- · First-stage decon personnel must wear same, or one lower, level of PPE as cleanup workers.

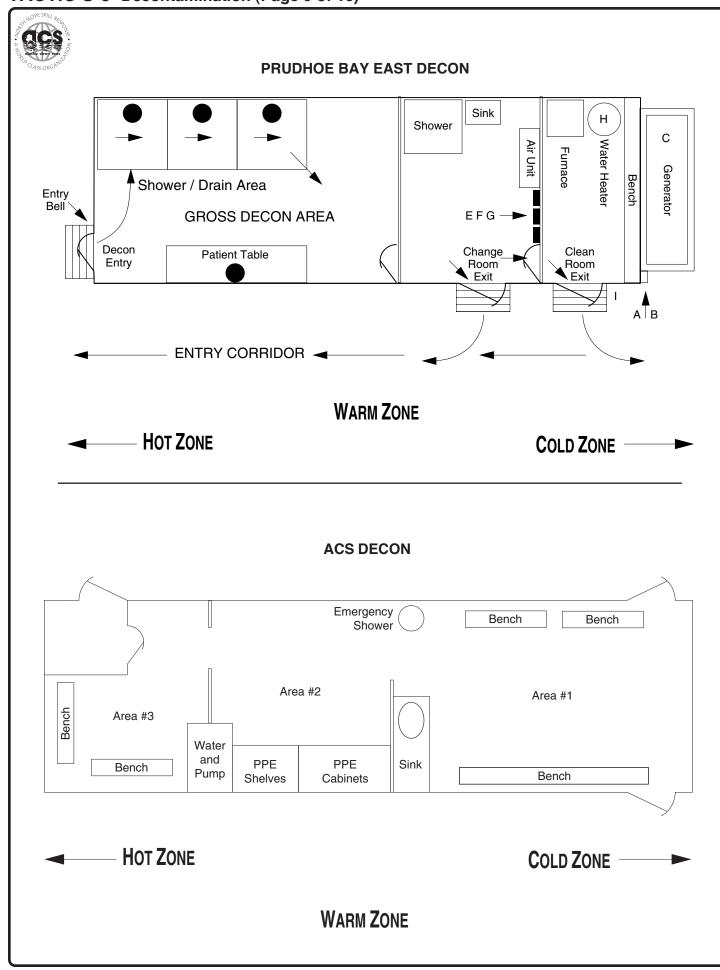

Resources required for decon and decon setup will depend on the following:

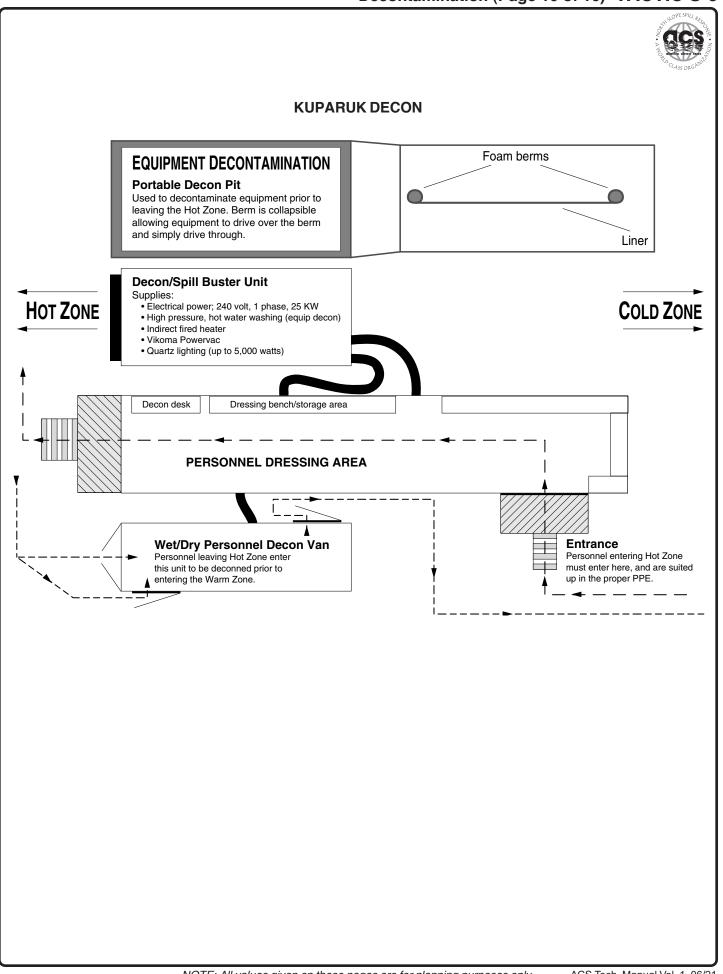

- · Availability of potable water, electric power, and waste disposal.
- · Mobilization time and duration of site activities.
- Level and type of cleanup and response activity expected at site, and site conditions.
- Available space for decon setup and location requirements for decon line.
- Health hazards presented by contaminants at cleanup/response site.
- · Need for additional controls (e.g., vapor diffusion/dispersion, movement/transfer of gross waste).



LEVEL A DECON






LEVEL C AND D — PARTIAL DECON

It is not feasible for workers to fully decontaminate each time they take a break from work activity. However, it is necessary that certain gear be removed so that contamination is not spread to clean areas. Hands and other exposed skin must be cleaned so the contamination is not ingested or spread to protected parts of the body or clothing.

Before eating, taking a break, or similar activities, workers should move to the designated break area and partially decontaminate. During the break, take extra care to prevent contamination of unprotected clothing and skin.

If required, vessels leaving a work site may be decontaminated. Vessel decontamination at remote sites may be performed adjacent to a floating platform. Sufficient length of boom to surround the vessel being decontaminated is deployed prior to the decontamination process. Boom and absorbent material are used to contain the oil. Decontaminating procedures may include vacuuming, pressure washing or hand-wiping the vessel's hull. Source water may be used to rinse the vessel's hull. As necessary, the decontamination procedures may be repeated to assure a clean hull and deck.

Whenever possible, hand wiping should be conducted as the initial gross decontamination procedure. Efforts should be made to minimize impacts to the environment by limiting, where possible, the use of decontamination methods that result in the re-introduction of oil and/or introduction of rinsate into the water.

A citrus-based cleaning agent approved by ADEC may also be used. Prior to using a specific cleaning agent, for the gross decontamination of vessels on water, where there is potential for introduction of the agent into the water, a Material Safety Data Sheet (MSDS) for that product must be provided to ADEC for review and approval.

Remaining oily residues may be absorbed with sorbents or a recovery system. All recovered oil is stored in suitable containers.

All waste from the decontamination process is transported to a permitted disposal facility. The disposal facility is designated in the incident waste management plan.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

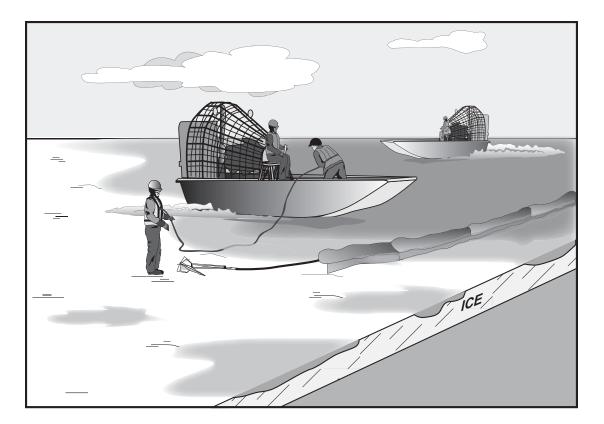
EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Water Truck	All	Water source	2	2	2 hr	0.5 hr
or	Upright Tank	KRU, Alpine	Water Source	1	2	2 hr	1 hr
	Steam Cleaning Unit		Removing oil	1	2	1 hr	1 hr
	Sorbents, oily waste bags, cleaning agents, etc.	All	Removing oil	Variable	2	1 hr	0.5 hr
	Trash Pump (2-inch)	All	Flushing oil	1	2	1 hr	1 hr
	Suction Hose (2-inch)	All	Flushing oil	≥20 ft	_	2 hr	1 hr
	Discharge Hose (3-inch)	All	Flushing oil	≥20 ft	_	2 hr	1 hr
	Workboat	All	Tend and deploy boom; serve as work platform	1	2	1 hr	1 hr
	Boom	All	Surround vessel being decontaminated	Variable	_	1 hr	1 hr

TOTAL STAFF

6

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Oily Waste Dumpster	North Slope Borough	Waste receptacle	1	1 initial	1 hr	0.5 hr
Light Plant	All	Illumination	1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	1 hr

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

Resources required for decon and decon setup depend on the following:

- Availability of potable water, electric power, and waste disposal.
- Mobilization time and duration of site activities.
- Level and type of cleanup and response activity expected at site, and site conditions.
- Available space for decon setup and location requirements for decon line.
- Health hazards presented by contaminants at cleanup/response site.
- Need for additional controls (e.g., vapor diffusion/dispersion, movement/transfer of gross waste).

Each spring, the nearshore Beaufort Sea in the area of ACS operations experiences a phenomenon called "over-flood" at the mouths of the major streams. As the ice in the upper reaches of the streams thaws before the lower reaches, water from these streams flows out over the nearshore landfast ice. This condition can be hazardous to personnel trying to conduct spill response operations from airboats. The ice under the overflood can be unstable under the weight of the water.

During overflood conditions, personnel should make every attempt to conduct spill response operations while staying onboard the vessels. If it is absolutely necessary for personnel to be on the ice, the following controls should be considered:

- Ice conditions evaluated by a *competent individual* approved by the On-Scene Commander (A *competent individual* is someone who through knowledge, training, and experience has the ability to identify existing and predictable hazards relating to deteriorating ice conditions.)
- Evaluation of weather conditions
- Experienced people only, as approved by the On-Scene Commander
- · Lightweight dry suits
- Personal flotation devices
- Harness with tether (man in boat tending line)
- Appropriate footwear (as dictated by specific conditions)
- At least two vessels in the immediate vicinity
- Post-immersion care facility immediately available (warm area, blankets, etc.)
- Emergency medical assistance immediately available
- An immerse evacuation plan will be communicated to all personnel.

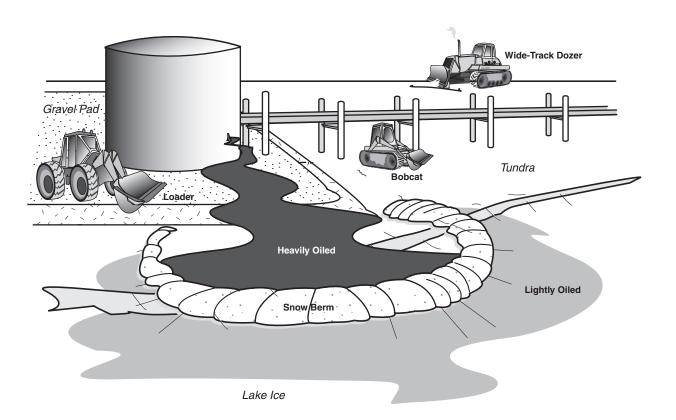
Safety During Operations in Overflood Conditions (Page 2 of 2) TACTIC S-8

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Lightweight Dry Suit	ACS	Body protection	<u>≥</u> 6	_	1 hr	0.5 hr
Personal Flotation Device	All	Life saving	≥6	_	1 hr	0.5 hr
Harness with Tether	All	Life saving	≥6	_	1 hr	0.5 hr
Footwear	ACS	Traction and foot protection	≥6 pair	_	1 hr	0.5 hr
Airboat	All	Transportation and safety	<u>≥</u> 2	2-3 per boat	1 hr	1 hr

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Shelter	ACS, GPB, Endicott, Alpine, Kuparuk	Warmup/break	2	2 initial*	1 hr*	1 hr
Heater	All	Heat	≥1	1 initial	1 hr	0.5 hr
Light Bank	All	Illumination	≥1	1 initial	1 hr	0.5 hr
Fuel Truck	All	Fuel	1	Once per shift	1 hr	0.5 hr
Medical Equipment	All	Life saving	1	_	1 hr	0.5 hr

^{*}Warmup trailers require 2 staff to set up and 0.5 hr to deploy; Weatherports required 3 staff to set up and 1 hour to deploy.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

• The use of cleated footwear, and dry work suits is recommended.

A snow berm is built around the areas of heaviest oiling to contain oil or diesel spilled to tundra and/or ice in winter. A rubber tracked, wide-track dozer drives around the spill with its blade angled towards the spill, pushing snow into a berm. Once the perimeter has been covered with an initial berm, the dozer shores up areas, as necessary.

A front-end loader could also be used to build a berm, and a Bobcat can be used to access areas the large front-end loader or wide-track dozer cannot reach.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

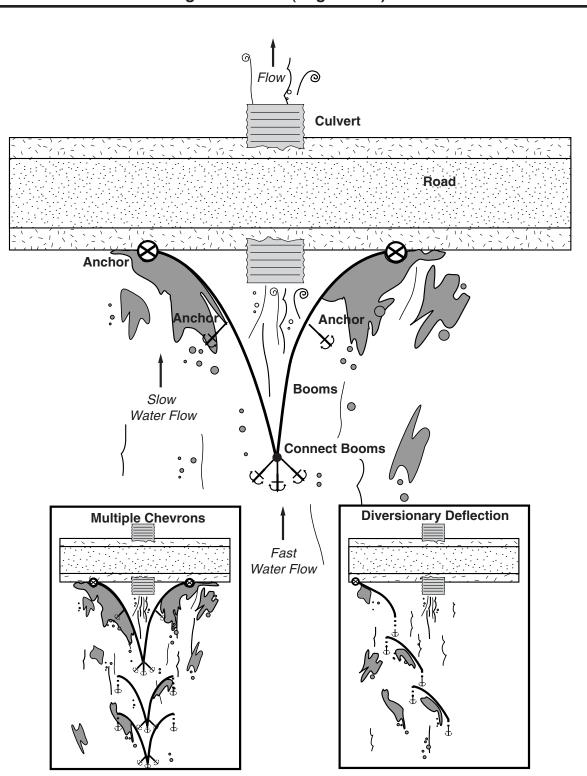
EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Wide-Track Dozer	All	Snow berm construction	1	1	1 hr	0.5 hr
or	Front-End Loader	All	Snow berm construction	1	1	1 hr	0.5 hr
or	Bobcat	ACS, PBE, KRU, Alpine	As needed	1	1	1 hr	0.5 hr

TOTAL STAFF

1

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport wide-track dozer	1	1 driver	1 hr	0
Heaters	All	Heat	≥1	1 (initial)	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial set-up, and 1 to check and fuel occasionally.	1 hr	0.5 hr

CAPACITIES FOR PLANNING

- A wide-track dozer can build an initial snow berm around the largest tank spill within an hour. Any shoring would take 3 hours or less.
- Normally, a front-end loader can build a snow berm on a pad within 1 hour.

- The wide-track dozer is the most efficient piece of equipment in snow berm construction, and can access tundra and ice-covered lakes. If insufficient snow cover exists, front-end loaders would provide snow for the wide-track dozer.
- When working with equipment around or near flowlines, add a spotter to each front-end loader and wide-track dozer.
- When ice-reinforced, snow berms are useful to contain oil that melts out during breakup.
- A civil work permit from the operator is required for all work on owner-company pads.

Boom is deployed in either chevron or diversionary configurations to deflect oil from mouth of culvert to collection sites along the road. This technique is especially useful when there is sheet flow across the frozen tundra. At that time, there is often a violent whirlpool at the upstream opening of a culvert, with lighter currents off to the sides. Blocking the culvert would be inadvisable because of the likelihood of washing out the road. Deadmen are typically used for anchors on the road, and collected oil can be directly pumped to a vacuum truck on the road.

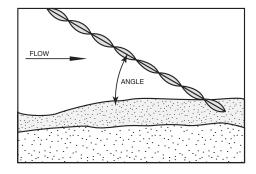
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

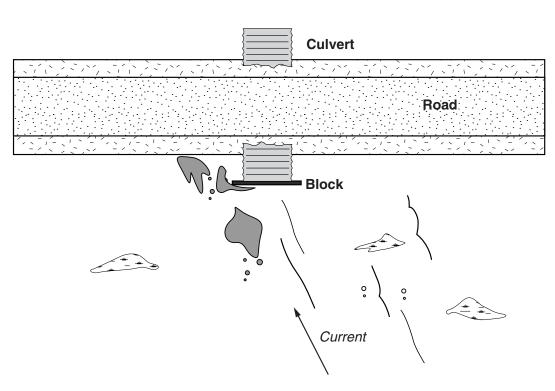
• Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

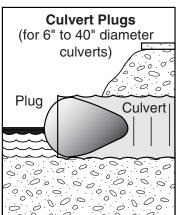
	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Work Boat	All	Containment	2			
or	Ropes & Pulleys	All	Boom positioning	Variable	6	1 hr	3 hr
	Boom	All	Deflection booming	≥ 50'			
	Anchor System	All	Anchor booming	≥ 2	3	1 hr	

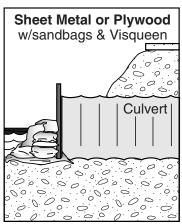
TOTAL STAFF FOR SETUP

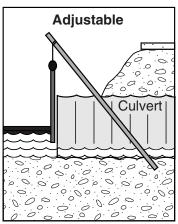

TOTAL STAFF TO MONITOR AND SUSTAIN OPERATIONS 3

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Bed Truck	All	Transport equipment	1	1	1 hr	0
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr


- 8x6 Delta boom is most commonly used for this tactic.
- The speed of the current perpendicular to the boom must be maintained at 3/4 knot or less to prevent oil loss.
- Number and configuration of booms depend on flow rate and number of collection sites. With any boom system, do not assume 100% containment with one system.
- An assortment of skimmers can be used alongside the roadway. When selecting a skimmer, consideration must be given to oil viscosity, available capacity, and volume of oil to be recovered.


CURRENT (knots)	CURRENT (ft/second)	BOOM ANGLE RELATIVE TO CURRENT REQUIRED TO KEEP COMPONENT OF CURRENT <3/4 KNOT
1.5	2.5	30° to 42°
1.75	2.9	25° to 35°
2.0	3.4	22° to 30°
2.25	3.8	19° to 26°
2.5	4.2	17° to 24°
2.75	4.6	16° to 21°
3.0	5.0	15° to 19°



A culvert is blocked using sheet metal, plywood barriers, or inflatable culvert plugs. Use a full block only when the culvert will be blocked for the entire cleanup operation, if the oil floating on the water will not contaminate additional soil or tundra, and if blocking the water flow will not threaten the road. Otherwise, an adjustable weir should be used.

Plywood and/or sandbags can also be used as culvert blocks, but are more labor-intensive and pose a higher potential for injury. A wood block may require a headwall with kickers oriented to support the boards or plywood. Place the blocking materials over the upstream end of the culvert. Plastic sheeting over the outside of the block will prevent oil penetration.

A MegaSecure dam may also be used if water depth is shallow enough.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

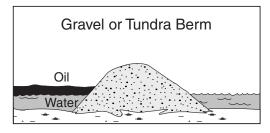
EQUIPMENT AND PERSONNEL

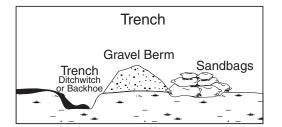
	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Visqueen	All	Containment	≥10 ft	2	1 hr	1 hr
	Inflatable Culvert Plugs	ACS, PBW, Alpine	Containment	1	2	1 hr	2 hr
or	Sheet Metal or Plywood Barriers	All	Containment	1	2	2 hr	2 hr
or	Sandbags	ACS, GPB, KRU, Alpine	Containment	≥10	≥6*	2 hr	2 hr
or	Gravel	_	Containment	_	_	_	_
or	MegaSecure Dam	ACS/Alyeska	Containment	1	2	1	1

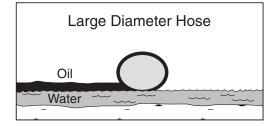
TOTAL STAFF FOR SETUP

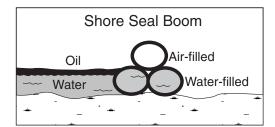
>2**

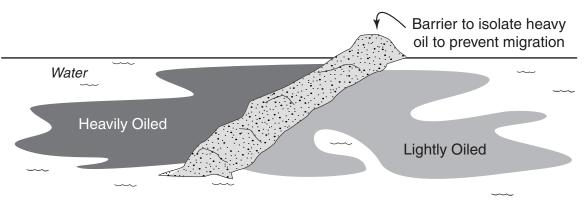
SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Air Compressor	All	Inflate culvert plugs	1	1	1 hr	0.5 hr
Front-End Loader	All	Unload sandbags	1	1	1 hr	0.5 hr
Flatbed Truck	All	Transport sandbags	1	1	1 hr	0


- Appropriate during breakup and summer when the flow to the culvert is small enough so that the road won't be washed out.
- Also can be used if high-volume pumps are available to pump water over the road to the other side of the culvert.
- When working with equipment around or near flow lines, a spotter must be added to each front-end loader or wide-track dozer.


^{*}Number of personnel depends on number of sandbags needed.


^{**}The recovery team would conduct monitoring and sustain operations.



A containment berm can be constructed of available materials such as earth, gravel, or snow. Use earth-moving equipment or manual labor to construct the berm. Form the materials into a horseshoe shape ahead of the flow of oil. Use plastic sheeting to line the walls of a soil berm to prevent oil penetration. Because of the sorbent quality of snow, it makes an excellent berm for both containment and recovery. A snow berm can be strengthened by spraying it with a fine water mist that forms an ice layer on top of the snow. Sandbags filled with sand or other heavy material also make excellent containment barriers.

Sorbent boom can be used when overland flows are relatively minor or in wetlands. The sorbent boom should be staked in place with stakes approximately 5 feet apart.

These barriers can serve to:

- · Contain and stabilize a contaminated area
- Contain or divert oil on water or oil that has potential to migrate
- Create cells for recovery
- Block natural depressions to act as containment areas for recovery

An excavated trench or a berm on the tundra can also be used to intercept the flow of a spill or divert the flow around a sensitive area. Dig the trench at right angles to the flow of the spill. The trench should be angled slightly downslope (in the direction of surface flow) to avoid excessive pooling in the trench. Place excavated material on the downhill side of the trench. In areas with a low water table, line the sides and bottom of the trench with plastic sheeting or similar impermeable materials. Where the groundwater table is high, line the downhill side of the trench. The trench can be flooded with water to inhibit spill penetration into sediments and to stimulate flow toward the recovery device in the trench or pit.

A MegaSecure dam may also be used.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Visqueen	All	Containment	≥10 ft	2	1 hr	1 hr
	Backhoe	GPB, KRU, Peak, AIC, Alpine	Trenching	1	1	2 hr	0.5 hr
or	Bobcat w/Trencher	ACS, KRU, Alpine	Trenching	1	1	1 hr	0.5 hr
or	Front-End Loader w/Bucket	All	Build Berms	1	1	1 hr	0.5 hr
or	Hose (5-inch)	KRU, Alpine	Berm/Contain	≥1 ft	2	2 hr	1 hr
or	Shore Seal Boom	ACS, KRU, MPU, Alpine	Berm/Contain	≥50 ft	≥4	1 hr	1 hr
or	Sandbags	ACS, KRU, GPB, Alpine	Berm/Contain	≥10	≥6*	2 hr	2 hr
or	MegaSecure Dam	ACS/Alyeska	Containment	1	2	1	1

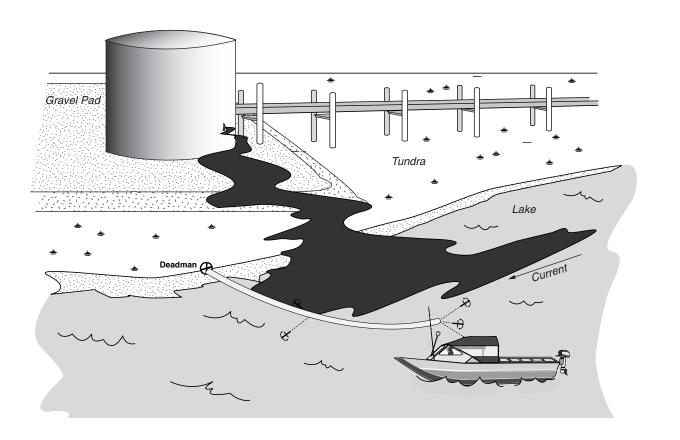
TOTAL STAFF FOR SETUP

≥3**

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport backhoe	1	1 driver	1 hr	0
Fuel Truck	All	Fuel equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Water Truck	All	Spray snow berm	1	2	2 hr	0.5 hr
Floating Pump and Blower	ACS, KRU, MPU, Alpine	Shore Seal inflation	1	2	1 hr	1 hr
Plywood	All	Walkway	Variable	2	2 hr	2 hr

CAPACITIES FOR PLANNING


• During summer, a backhoe can dig a ditch or trench 2 ft deep by 40 ft long in approximately 1 hour.

- Disposal of construction material should be taken into account before using this tactic.
- This tactic is appropriate for use with low flow and shallow water on pad or tundra. The least intrusive methods for building berms are preferred on tundra.
- Do not excavate where excavation will cause more damage than the spill. The Bobcat trimmer is the last option for trenching. A permit may be needed from the landowner.
- Before excavating in tundra, check for the presence of groundwater or permafrost. Do not excavate into frost-laden (cemented) soils, since disruption of the permafrost could accelerate thermal erosion. The depth of the trench is limited by the depth of the permafrost. A plastic liner or sheeting can be used on the walls of the soil or gravel berm to inhibit spill penetration into the soils or gravel.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- · When working with equipment around or near flow lines, a spotter must be added to each front-end loader.
- · A civil work permit from the operator is required for all work on owner-company leases.

^{*}Number of personnel depends on number of sandbags needed.

^{**}The recovery team would conduct monitoring and sustain operations.

During breakup and summer, lengths of conventional boom can be deployed on a lake or flooded tundra once there is enough open water available. The boom deployment techniques are the same as those in open water.

The purpose of deflection booming is to divert oil to a collection point for removal with skimmers. It can also be used as exclusion booming to protect lengths of shoreline.

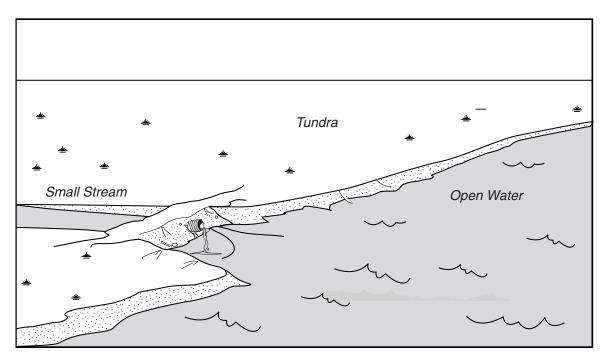
Deflection or Exclusion Booming on Lake or Tundra (Page 2 of 2) TACTIC C-5

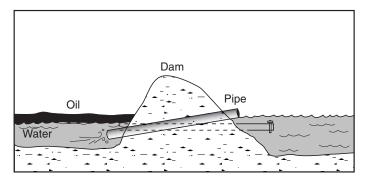
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Boom	All	Deflection booming	≥50 ft	0	1 hr	
Work Boat	All	Booming support	1] 3	1 hr	3 hr
Anchor System	All	Anchoring boom	Variable	3	1 hr	


TOTAL STAFF


SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Mechanic Support	All	Support Equipment	1	1	1 hr	0.5 hr

- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- · When working with equipment around or near flow lines, a spotter must be added to each front-end loader.
- A civil work permit from the operator is required for all work on owner company pads.
- SUMMER CONSIDERATIONS:
- Equipment is same as for breakup (just make sure you're not tearing up the tundra)
- Prop boats can be used
- Can use tundra berm or trench after thaw
- FREEZEUP CONSIDERATIONS:
- No ice under water in ponds
- Slush ice possible
- Consider tundra same as in summer
- Thin ice
- 8x6 Delta boom is most commonly used for this tactic.

An underflow dam can be used when there is too much water flow to allow for a complete blockage of a drainage channel. The dam is built of earth, gravel, or other barriers such as sandbags or plywood sheets. A MegaSecure dam may also be used if water depth is shallow enough.

Wherever possible, line the upstream side of the dam with plastic sheeting to prevent erosion and penetration of oil into the dam material.

Underflow dams use inclined pipes to move water downstream while leaving the spill contained behind the dam. The capacity of the pipe (or pipes) should exceed the stream flow rate. It may be necessary to use pumps.

Pipes must be placed on the upstream side of the dam, with the elevated end on the downstream side. Make sure that the upstream end of the pipe is submerged and below the oil/water interface. The height of the elevated downstream end of the pipe will determine the water level behind the dam.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use

EQUIPMENT AND PERSONNEL

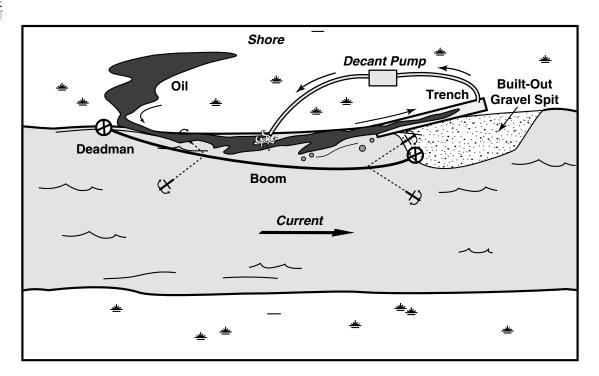
at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Wide-Track Dozer	All	Dam construction	1 (3 available on Slope)	1	1 hr	0.5 hr
or	Front-End Loader (with bucket and forks)	All	Dam construction	1	1	1 hr	0.5 hr
or	MegaSecure Dam	ACS/Alyeska	Containment	1	2	1	1
or	Sandbags (bulk bags may be used)	ACS, KRU, GPB, Alpine	Dam	Minimum quantity of fill	≥6*	2 hr	
or	Plywood	All	Liner	≥1	2	2 hr	2 hr
	Visqueen (reinforced)	All	Dam	1 roll	_	1 hr	2111
	Pipe, 6-inch or larger	All	Dam	≥20 ft	<u>≥</u> 2	1 hr	

TOTAL STAFF FOR SETUP

>3**

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport wide-track dozer	1	1 driver	1 hr	0
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr

- When working with equipment around or near flowlines, add a spotter to each front-end loader and Challenger.
- Check dams periodically for leakage and integrity, replace eroded materials, and continually monitor the water/oil
 interface. Valved pipes, pumps, or number of siphons may require periodic adjustment to compensate for minor
 changes in stream flow.
- If sufficient underflow cannot be maintained or if excessive overflow occurs, additional dams downstream may be required.
- Gravel or topping may have to be added continually to the dam if erosion is a problem.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- Approval of State On-Scene Coordinator and ADF&G is necessary for civil work in anadromous fish streams, as well as a Title 16 permit from ADF&G.
- Damming of stream mouth may block fish passage. Remove dams immediately when no longer needed.
- Sandbags are labor-intensive and should be the last consideration.
- In larger streams, consider the use of bulk bags for dam construction.

^{*}Number of personnel depends on number of sandbags needed.

^{**}The recovery team would conduct monitoring and sustain operations.

A natural or man-made deadarm trench can be used along the bank of a river to keep oil from migrating downstream from a spill on land. The deadarm will serve as a control point downstream of where the oil is entering the river. Deflection boom is deployed to help divert the oil into the deadarm, which may be lined with an impermeable liner.

In addition, the entry of oil at the mouth of the deadarm can be controlled with an adjustable weir.

EQUIPMENT AND PERSONNEL

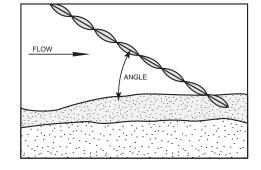
• Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Boom	All	Diversion	≥50 ft	0	1 hr	
Work Boat	All	Booming support	1	3	1 hr	
Backhoe	GPB, KRU, Peak, Alpine	Trenching	1	1	2 hr	
Anchor System	All	Anchoring boom	Variable	3	1 hr	
Trash Pump (3-inch)	All	Decanting from trench	1	1	1 hr	3 hr
Suction Hose (3-inch)	All	Decanting from trench	≥20 ft	2 for setup	1 hr	
Discharge Hose (3-inch)	All	Decanting from trench	≥50 ft	_	1 hr	

TOTAL STAFF FOR SETUP
TOTAL STAFF TO MONITOR AND SUSTAIN
BOOM CONFIGURATION DURING RECOVERY

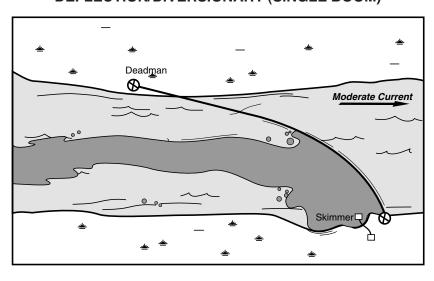
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

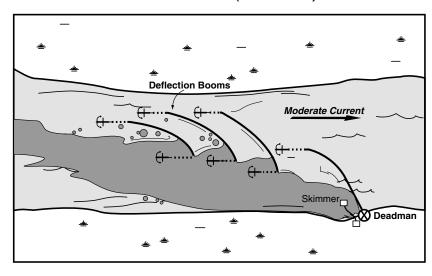


SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Haul backhoe	1	1	1 hr	0
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All except Badami	Provides fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr


- · 8x6 Delta boom is most commonly used for this tactic.
- The angle of the trench to current is important. Keep the current perpendicular to the boom at 3/4 knot or less.
- Oil will follow current along the shore.
- A Title 16 permit from ADF&G is required when digging trenches in river beds and river banks.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- Readjust angles and widths between boom sections as current and wind change. Constantly monitor nearshore boom systems to prevent escape of oil.

CURRENT (knots)	CURRENT (ft/second)	BOOM ANGLE RELATIVE TO CURRENT REQUIRED TO KEEP COMPONENT OF CURRENT <3/4 KNOT
1.5	2.5	30° to 42°
1.75	2.9	25° to 35°
2.0	3.4	22° to 30°
2.25	3.8	19° to 26°
2.5	4.2	17° to 24°
2.75 4.6		16° to 21°
3.0	5.0	15° to 19°



DEFLECTION/DIVERSIONARY (SINGLE BOOM)

DIVERSIONARY (CASCADE)

The object of stream booming is to remove oil from the fastest water and divert it to slower water. A stream can be boomed by deploying the boom either upstream or downstream. In either case, the boom is first set out on the stream bank. Before the boom is deployed, rig anchor points on the boom. The boom is attached to a shore anchor, and then the boom is either towed upstream to a midstream anchor point, or the boom is allowed to drift downstream with the current. Once the boom is set, intermediate anchors are set as needed to ensure that the boom maintains the proper configuration (remembering that the current perpendicular to the boom should not exceed 3/4 knot). Examples of deployment configurations follow.

Diversionary (single boom): A boom is deployed from one bank at an angle to the current and anchored midstream or on the opposite bank for diverting the oil to an eddy or other quiet-water collection point on the shoreline. Alternatively, a single long boom can be used in a multichannel stream to divert oil so that it stays in one channel.

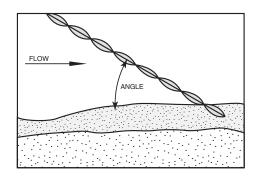
Diversionary (cascade): Several booms are deployed in a cascade fashion when a single boom can't be used because of a fast current or because it's necessary to leave openings for boats to get through. This configuration can be used in strong currents where it is impossible or difficult to deploy one long boom. Shorter sections of boom used in a cascade deployment are easier to handle in fast water. However, more equipment is needed than when a single boom is used.

Deflection Booming in Stream (Page 2 of 6) TACTIC C-8

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

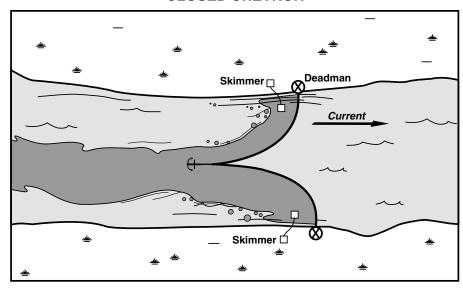
EQUIPMENT AND PERSONNEL

• Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

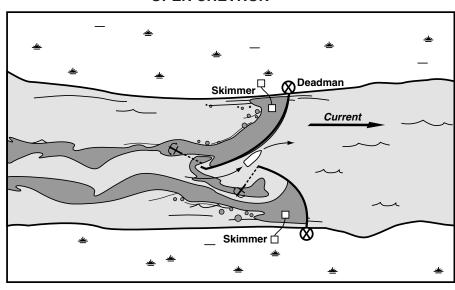

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Boom	All	Deflection booming	≥50 ft	6 for setup 3 to maintain	1 hr	3 hr
Work Boat	All	Booming support	2		1 hr	
Anchor System	All	Anchoring boom	Variable		1 hr	

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr


- 8x6 Delta boom is most commonly used for this tactic.
- Since the speed of the current perpendicular to the boom must be maintained at 3/4 kt or less, the length of boom needed to stretch across a stream depends on the current. For a stream 100 ft across with a 1 kt current, a boom approximately 140 ft long is needed. If the current is 2 kt, the same stream would require 320 ft of boom. The speed of the current is not equal across the stream; the fastest water is with the deepest water. Oil moving in a stream will be entrained in the fastest water.
- The shortest length of boom available is 50 ft. Generally, the minimum length required to boom a river such as the Sagavanirktok or Kuparuk is 500 ft.
- · Readjust angles and widths between boom sections as current and wind change. Constantly monitor nearshore boom systems to prevent escape of oil.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

CURRENT (knots)	CURRENT (ft/second)	BOOM ANGLE RELATIVE TO CURRENT REQUIRED TO KEEP COMPONENT OF CURRENT <3/4 KNOT
1.5	2.5	30° to 42°
1.75	2.9	25° to 35°
2.0	3.4	22° to 30°
2.25	3.8	19° to 26°
2.5	4.2	17° to 24°
2.75	4.6	16° to 21°
3.0	5.0	15° to 19°



CLOSED CHEVRON

OPEN CHEVRON

Chevron boom configurations are also for use in fast water. Two booms are deployed from an anchor in the middle of the stream and attached to each bank. A chevron configuration is used to break a slick for diversion to two or more collection areas. An open chevron can be used where boat traffic must be able to pass. (The two booms are anchored separately midstream, with one anchor point upstream or downstream of the other).

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for

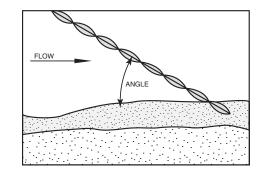
A CASCO SAME

operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

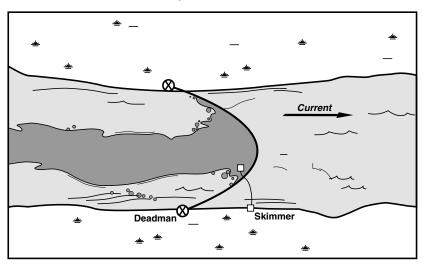
• Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Boom	All	Deflection booming	≥50 ft		1 hr	
Work Boat	All	Booming support	3	9 for setup 3 to maintain*	1 hr	3 hr
Anchor System	All	Anchoring boom	Variable		1 hr	

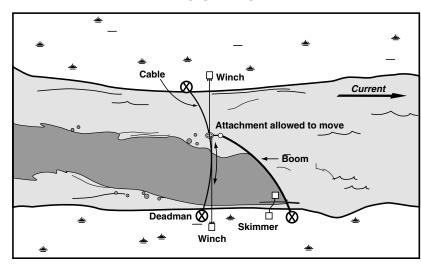

^{*}Recovery crews can assist with monitoring boom if necessary.

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr


- 8x6 Delta boom is most commonly used for this tactic.
- Since the speed of the current perpendicular to the boom must be maintained at 3/4 kt or less, the length of boom needed to stretch across a stream depends on the current. For a stream 100 ft across with a 1 kt current, a boom approximately 140 ft long is needed. If the current is 2 kt, the same stream would require 320 ft of boom. The speed of the current is not equal across the stream; the fastest water is with the deepest water. Oil moving in a stream will be entrained in the fastest water.
- The shortest length of boom available is 50 ft. Generally, the minimum length required to boom a river such as the Sagavanirktok or Kuparuk is 500 ft.
- Readjust angles and widths between boom sections as current and wind change. Constantly monitor nearshore boom systems to prevent escape of oil.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

CURRENT (knots)	CURRENT (ft/second)	BOOM ANGLE RELATIVE TO CURRENT REQUIRED TO KEEP COMPONENT OF CURRENT <3/4 KNOT
1.5	2.5	30° to 42°
1.75	2.9	25° to 35°
2.0	3.4	22° to 30°
2.25	3.8	19° to 26°
2.5	4.2	17° to 24°
2.75	4.6	16° to 21°
3.0	5.0	15° to 19°



CATENARY

DIVERSION/TROLLEY

Catenary (currents less than 1/4 knot): The boom is attached to an anchor on one bank, and the other end is towed to the other bank and attached to an anchor there. The current naturally puts the boom in a "U" shape ("catenary"). The deployment and maintenance of a single long boom can be difficult and labor-intensive. It is usually used for recovery operations.

Trolley (cable-supported diversionary boom): A cable or line is strung across a river and the boom attached to the trolley line with a pulley.

Deflection Booming in Stream (Page 6 of 6) TACTIC (

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

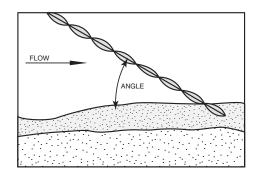
EQUIPMENT AND PERSONNEL

• Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Boom	All	Deflection booming	≥50 ft	6 for setup	1 hr	
Work Boat	All	Booming support	2	3 to maintain	1 hr	
Chain Saw Winch	KRU, GPB, Alpine	Booming support	2		1 hr	3 hr
Anchor System	All	Anchoring boom	Variable	4 for setup*	1 hr	
Floating Winch	ACS, PBE, Alyeska	Boom support	2		1 hr	

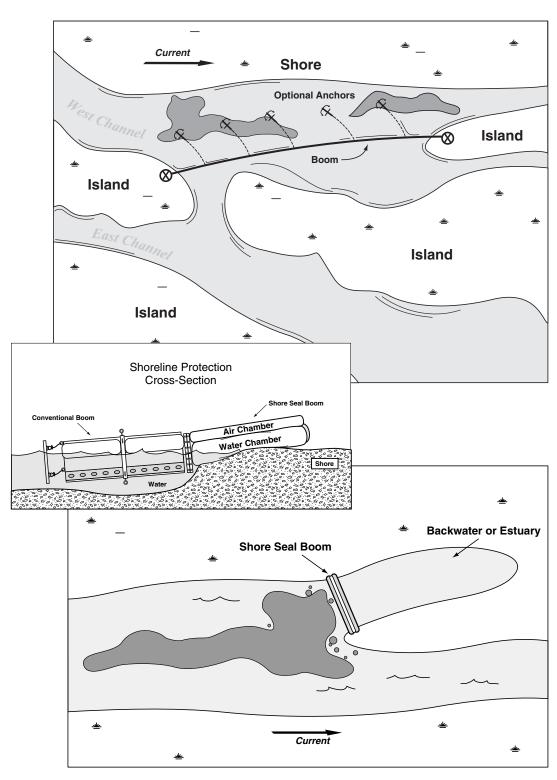
TOTAL STAFF FOR SETUP

10


TOTAL STAFF TO SUSTAIN OPERATIONS 3

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr


- 8x6 Delta boom is most commonly used for this tactic.
- Since the speed of the current perpendicular to the boom must be maintained at 3/4 kt or less, the length of boom needed to stretch across a stream depends on the current. For a stream 100 ft across with a 1 kt current, a boom approximately 140 ft long is needed. If the current is 2 kt, the same stream would require 320 ft of boom. The speed of the current is not equal across the stream; the fastest water is with the deepest water. Oil moving in a stream will be entrained in the fastest water.
- A cable extended across the river can be dangerous. Make sure everyone knows it's there and that any approaching boats are warned. Mark the cable with buoys.
- The shortest length of boom available is 50 ft. Generally, the minimum length required to boom a river such as the Sagavanirktok or Kuparuk is 500 ft.
- Readjust angles and widths between boom sections as current and wind change. Constantly monitor nearshore boom systems to prevent escape of oil.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

CURRENT (knots)	CURRENT (ft/second)	BOOM ANGLE RELATIVE TO CURRENT REQUIRED TO KEEP COMPONENT OF CURRENT <3/4 KNOT
1.5	2.5	30° to 42°
1.75	2.9	25° to 35°
2.0	3.4	22° to 30°
2.25	3.8	19° to 26°
2.5	4.2	17° to 24°
2.75	4.6	16° to 21°
3.0	5.0	15° to 19°

^{*}Recovery crews will maintain anchors and winches (see Tactic R-16).

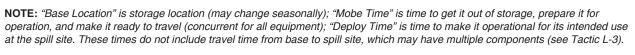
Either conventional boom or a Shore Seal boom can be used to exclude oil from a sensitive area. For example, the Shore Seal boom can be used in shallow water to boom off a backwater, or a conventional boom can be placed across the mouth of a side channel to keep oil out. In addition, Shore Seal boom can be connected to conventional boom to protect the shoreline.

CCS daska clean seas operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

 Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

EQUIPMENT AND PERSONNEL

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for


	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Boom	ACS, GPB, KRU, Endicott, Alpine	Exclusion booming	≥50 ft	3	1 hr	3 hr
and/or	Shore Seal Boom	ACS, KRU, MPU, Alpine	Exclusion booming	≥50 ft		1 hr	1.5 hr
	Work Boat	All	Booming support	1	4	1 hr	3 hr
	Floating Pump and Blower	ACS, KRU, MPU, Alpine	Shore Seal inflation	1		1 hr	1.5 hr
	Anchor System	All	Anchoring boom	Variable	2	1 hr	3 hr

TOTAL STAFF FOR SETUP ≥5

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr

SUPPORT

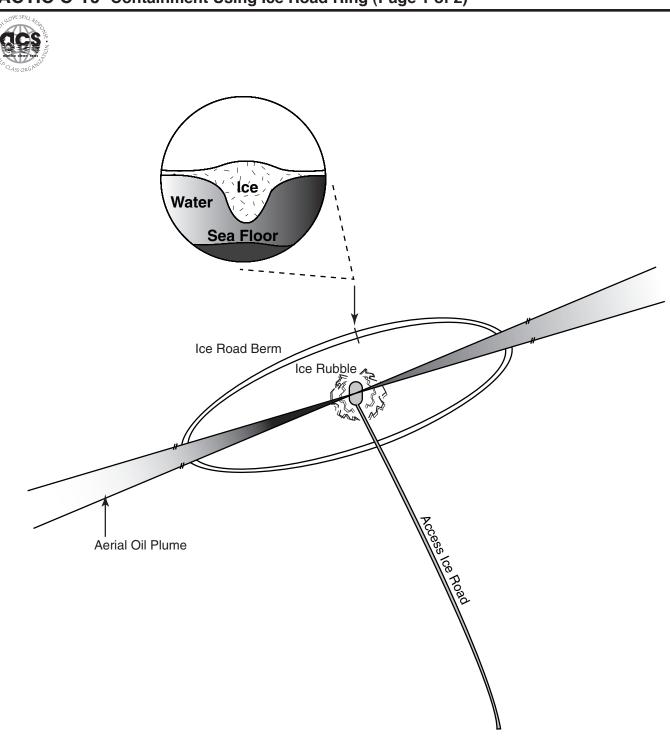
- 8x6 Delta boom is most commonly used for this tactic.
- Since the speed of the current perpendicular to the boom must be maintained at 3/4 kt or less, the length of boom needed to stretch across a stream depends on the current. For a stream 100 ft across with a 1 kt current, a boom approximately 140 ft long is needed. If the current is 2 kt, the same stream would require 320 ft of boom.
- The speed of the current is not equal across the stream; the fastest water is with the deepest water. Oil moving in a stream will be entrained in the fastest water.
- Don't assume 100% containment with one boom system.
- · Readjust angles and widths between boom sections as current and wind change. Constantly monitor nearshore boom systems to prevent escape of oil.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Rolligon w/Auger	AES, Peak	Ice road construction	<u>≥</u> 2	<u>≥</u> 2	6 hr	
or	Water Truck	All	Ice road construction	<u>≥</u> 2	<u>≥</u> 2	2 hr	
	Front-End Loader w/Drag	Peak	Ice road construction	≥1	≥1	1 hr	1 hr
or	Grader w/Wing Blade	Peak, AIC, GPB, KRU	Ice road construction	≥1	≥1	2 hr	

TOTAL STAFF TO SUSTAIN OPERATIONS >3

SUPPORT

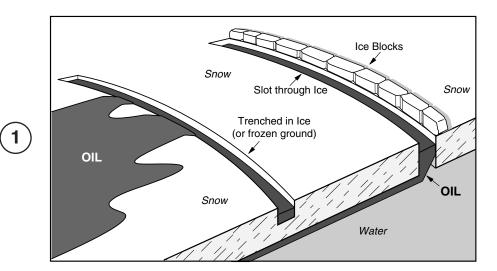

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All except Badami Provide fluids to heavy 1 Once per shift equipment		Once per shift	1 hr	0.5 hr	
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr
Heater	All	Equipment support	1	1 initial setup	1 hr	0.5 hr

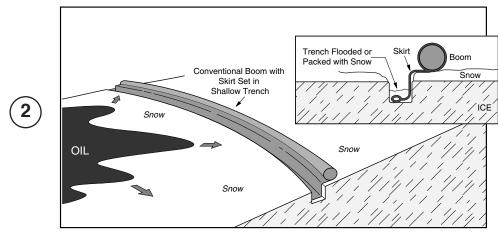
CAPACITIES FOR PLANNING

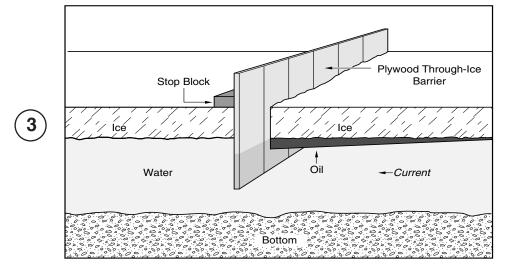
- A loader with a drag and a water truck hauling fresh water can make approximately one-third mile of ice road 6 inches thick in 12 hours. If the ice is already thick enough to support activities, 6-inch lifts would not be necessary, and the length of ice road completed in 12 hours would increase.
- Rolligons with ice augers can build approximately 3,000 ft of road 4 inches thick in 12 hours using sea water.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- Check ice thickness for safe bearing capacity before working on ice. The ice must be sufficiently strong to support personnel and heavy equipment. See Tactic L-7 for realistic maximum operating limitations (RMOL) for ice thickness and temperature.
- If the ice is not thick enough, a Rolligon may be needed to pull the drag.




For a blowout that is depositing oil on top of solid sea ice, an ice road can be constructed around the source at a safe distance. Since the ice road causes the sea ice to deflect downward under the road, an under-ice barrier is created to the movement of any oil that may have gotten under the ice. The road also serves as a surface barrier because it is higher than the surrounding ice, and will provide a working platform into the breakup season, when the ice inside the ring decays.


In addition, ice work pads can be created adjacent to contaminated areas to provide working platforms for heavy equipment needed to remove large volumes of oil-contaminated snow.

An alternative method to create an ice ring barrier is to remove the snow from the ice surface. Ice not covered by snow will grow thicker.

Various techniques that are used on land can also be used on solid ice. (1) Partial trenches or through-ice slots can be dug in the ice surface with a trencher to encourage oil flow to a collection point. (2) The skirt of a containment boom can be set in a shallow trench to provide additional containment. (3) Another approach is to insert a plywood or metal barrier in a slot so that the barrier freezes in place. This tactic can be used to divert under-ice oil to a recovery point.

For smaller volumes of oil on ice, small snow berms can be created to contain the oil, but only where ice is thick enough and/or grounded to prevent cracking, pooling, and forced migration of oil below the ice.

Containment on Ice with Trenches and Sumps (Page 2 of 2) TACTIC C-11

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

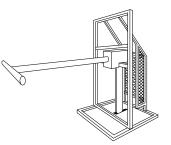
	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Trencher	Rental	Trenching	1	2	3 hr	
or	Rube Witch w/Chain Saw	All	Trenching	3	6	1 hr	
	Visqueen	All	Liner	≥50 ft	_	1 hr	
	Boom	All	Liner	≥50 ft	_	1 hr	2 hr
or	ATVs	ACS, GPB, END, KRU, Alpine	Snow berm construction	2	2	1 hr	
or	Plywood	All	Through-ice barrier	>1	_	2 hr	

TOTAL STAFF FOR SETUP

>4*

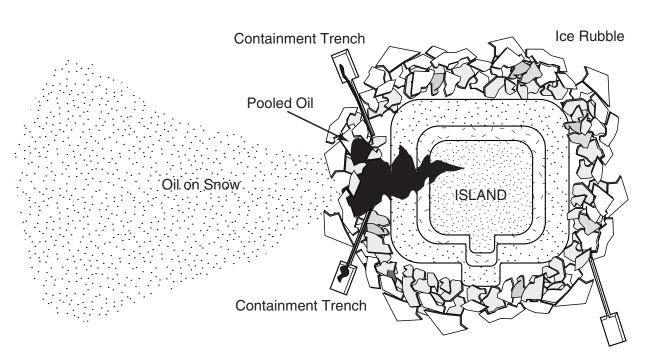
SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr
Heater	All	Equipment support	1	1 initial setup	1 hr	0.5 hr


CAPACITIES FOR PLANNING

• A trencher with a 6-ft bar can cut approximately 100 ft of trench per hour through ice 6 ft deep. Cutting in frozen ground is much slower.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS


- Check ice thickness for safe bearing capacity before working on ice. The ice must be sufficiently strong to support personnel and heavy equipment. See Tactic L-7 for realistic maximum operating limitations (RMOL) for ice thickness and temperature. Also, ensure ice can withstand extra load of oil and ice on the surface without either breaking the ice or forcing oil to migrate through existing cracks. Extreme care must be taken when positioning or operating any heavy equipment close to trenches or slots in the ice. Stresses in the ice for a given load can double under these situations. Ensure that oil that accumulates in an ice trench is continually removed. If allowed to build up to a thick layer, some oil may escape the ice slot.
- Use of the Rube Witch with chain saw is labor-intensive and therefore slower than a trencher.

ACS Rube Witch

^{*}The recovery crew will perform maintenance (see Tactic R-13).

Trenching can help recover oil from a blowout on an offshore island in winter when the sea ice is solid.

Gravel islands develop ice rubble fields around their perimeter, and a large volume of oil from a well blowout plume would fall either on the island or over the rubble field. Where oil is flowing away from an ice rubble pile adjacent to an island where a well is blowing out, it may be possible to dig an ice trench away from the island to encourage rivulets of oil to flow to a collection sump a safe distance away. Liners can be used in both the trench and sump.

Such an activity is attempted only if it is possible to work safely near the blowout plume.

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Trencher	Norgasco	Trenching	1	1	3 hr	0.5 hr
or	Rube Witch w/Chain Saw	All	Trenching	1	2	1 hr	0.5 hr
	Backhoe	GPB, KRU, Peak, Alpine	Clear a trench area	1	1	2 hr	0.5 hr

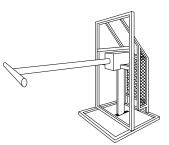
TOTAL STAFF ≥2

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

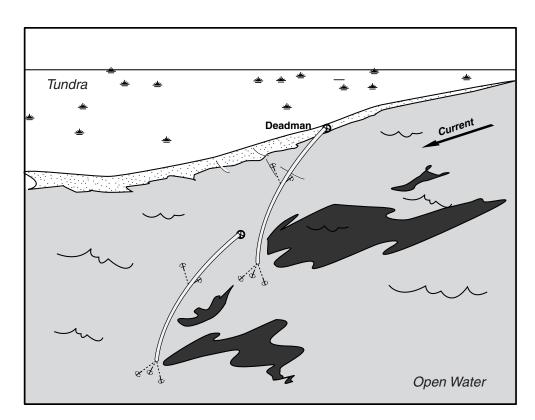
Trenching Ice to Direct Flow to a Containment Point (Page 2 of 2) TACTIC C-12

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport Ditch Witch	1	1 driver	1 hr	0
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr
Heater	All	Heat	1	1 initial setup	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr

CAPACITIES FOR PLANNING


• A trencher with a 6-ft bar can cut approximately 100 ft of trench per hour through ice 6 ft deep. Cutting in frozen ground is much slower.

- Check ice thickness for safe bearing capacity before working on ice. The ice must be sufficiently strong to support personnel and heavy equipment. See Tactic L-7 for realistic maximum operating limitations (RMOL) for ice thickness and temperature. Also, ensure ice can withstand extra load of oil and ice on the surface without either breaking the ice or forcing oil to migrate through existing cracks. Extreme care must be taken when positioning or operating any heavy equipment close to trenches or slots in the ice. Stresses in the ice for a given load can double under these situations. Ensure that oil that accumulates in an ice trench is continually removed. If allowed to build up to a thick layer, some oil may escape the ice slot.
- Use of the Rube Witch with chain saw is labor-intensive and therefore slower than a trencher.
- Cut the trench only to a depth that will allow a collection area not all the way through the ice.
- A backhoe may be required to clear an area for cutting of the containment trench.

Deflection booming is often used where the water current is greater than 1 knot or where exclusion boom does not protect the shoreline. Deflection booming diverts oil to locations that are less sensitive or more suitable for recovery.

Boom is anchored at one end at the shoreline, while the free end is held at an angle by an anchor system. Deflection boom is deployed at an angle to the current to reduce and divert surface flow. This allows the oil to move along the boom and eliminates vortexes and entrainment. Anchoring is usually placed every 50 feet depending on the current. Anchoring distance will vary depending on current.

Cascading deflection boom involves two or more lengths of boom ranging from 100 feet to 500 feet placed in a cascading formation in the water. The lead boom deflects the slick, and subsequent booms placed downstream of the lead boom continue the deflection process until the slick is directed to the desired area.

EQUIPMENT AND PERSONNEL

• To determine the approximate length of boom required, multiply 1.5 times the length of shoreline to be protected. Select vessels and booms according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Work Boat	All	Deploy deflection boom	2	6	1 hr	
Boom	All	Deflection	Variable	6	1 hr	
Anchor System	All	Anchor boom	Variable	2	1 hr	3 hr
Onshore Anchors (e.g., deadmen)	All	Anchor boom	Variable	_	1 hr	

TOTAL STAFF FOR SETUP 8
TOTAL STAFF TO SUSTAIN OPERATIONS 3 (AND 1 BOAT)

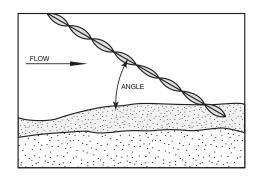
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

SUPPORT

• Recovery systems are sometimes used in conjunction with deflection boom.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr


CAPACITIES FOR PLANNING

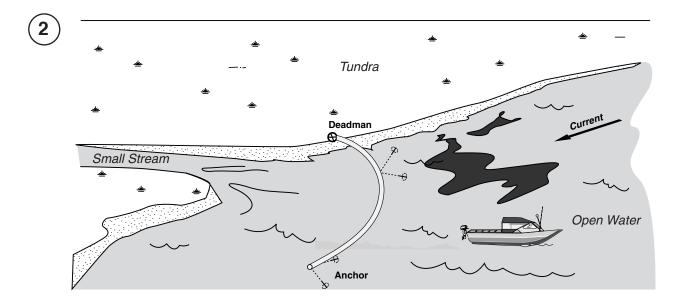
• One response team can deploy and tend up to 8,000 ft of boom in a 12-hour shift along 2 miles of shoreline (assumes 10 working hours in a 12-hour shift).

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

The optimum angle of boom deployment depends on the current speed and the length and type of boom. The
angle is smaller in strong currents than in weak currents and decreases as boom length increases. The more
stable the boom is, the larger the optimum deployment angle is for a given current speed. Because deflection
booms significantly reduce surface current, successive booms are deployed at increasingly larger angles.

CURRENT (knots)	CURRENT (ft/second)	BOOM ANGLE RELATIVE TO CURRENT REQUIRED TO KEEP COMPONENT OF CURRENT <3/4 KNOT
1.5	2.5	30° to 42°
1.75	2.9	25° to 35°
2.0	3.4	22° to 30°
2.25	3.8	19° to 26°
2.5	4.2	17° to 24°
2.75	4.6	16° to 21°
3.0	5.0	15° to 19°




- Don't assume 100% containment with one boom system.
- Readjust angles and widths between boom sections as current and wind change. Constantly monitor nearshore boom systems to prevent escape of oil.
- In extreme shallow water conditions, sheet metal may be used in lieu of boom in the apex. Use 36 pieces of metal and 37 stakes per 100 ft.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- Below are boom towing limitations for airboats during overflood conditions in the nearshore Beaufort Sea (based on 2005 ACS seasonal recovery testing):

ICE CONDITIONS	FIRE BOOM (20 lb/linear ft)	FIRE BOOM (7 lb/linear ft)	FIRE BOOM (6 lb/linear ft)	DELTA BOOM
Groundfast or Shorefast Ice (with overflood)	100 ft	300 ft	350 ft	750 ft
Broken Ice: Large, Dense, First-Year, Afloat	100 ft	300 ft	350 ft	750 ft
Broken Ice: Smaller, Less Dense, Rotted	200 ft	600 ft	700 ft	1,000 ft

Boom is placed across small inlets and creek mouths identified as sensitive areas. Exclusion booming is used where currents are less than 3/4 knot and breaking waves are less than 0.5 foot in height. The boom is either (1) anchored from shore to shore across the mouths of streams or (2) at an angle to a shoreline to guide oil past the sensitive area. Crews with work boats deploy and tend boom along the shoreline in marshes and inlets.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• To determine the approximate length of boom required, multiply 1.5 times the length of shoreline to be protected. Select vessels and booms according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Work Boat	All	Deploy and tend boom	2		1 hr	
Boom	All	Deflection	Variable	6	1 hr	3 hr
Anchor System	All	Anchor boom	Variable		1 hr	

TOTAL STAFF FOR SETUP
TOTAL STAFF TO SUSTAIN OPERATIONS

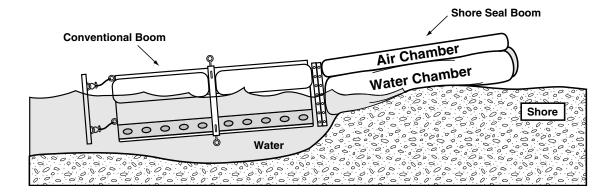
3 (AND 1 BOAT)

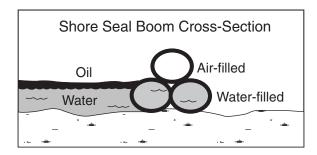
6

SUPPORT

• Recovery systems are sometimes used in conjunction with exclusion boom. Sorbent boom may be deployed parallel and inside exclusion boom.

EQUIPMEN ⁻	. BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Traile	ACS, KRU, GPB, Alpine, Badami (300 gal)	Airboat fuel	1	1 initial	1 hr	0.5 hr


CAPACITIES FOR PLANNING


• One tactical unit can deploy and tend up to 4,000 ft of boom in a 12-hour shift along 2 miles of shoreline (assumes 10 working hours in a 12-hour shift).

- Exclusion booming is effective if the water currents are less than 3/4 kt, breaking waves are less than 0.5 ft, and water depth is at least twice the boom depth in other than intertidal areas.
- A flexible curtain-type boom reacts more favorably to tidal level fluctuation than a rigid fence-type boom.
- Exclusion booming is most effective across small stream mouths or inlets. Other areas may be more sensitive and require protection, but ability to protect efficiently needs to be considered when determining exclusion booming areas.
- Don't assume 100% containment with one boom system.
- Readjust angles and widths between boom sections as current and wind change. Constantly monitor nearshore boom systems to prevent escape of oil.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which
 must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or
 any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented
 and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and
 biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic
 can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of
 plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- Below are boom towing limitations for airboats during overflood conditions in the nearshore Beaufort Sea (based on 2005 ACS seasonal recovery testing):

ICE CONDITIONS	FIRE BOOM (20 lb/linear ft)	FIRE BOOM (7 lb/linear ft)	FIRE BOOM (6 lb/linear ft)	DELTA BOOM
Groundfast or Shorefast Ice (with overflood)	100 ft	300 ft	350 ft	750 ft
Broken Ice: Large, Dense, First-Year, Afloat	100 ft	300 ft	350 ft	750 ft
Broken Ice: Smaller, Less Dense, Rotted	200 ft	600 ft	700 ft	1,000 ft

Shore Seal boom is bottom-founded and anchored at tideline and in very shallow water. Sorbent boom would be used at connections to prevent leaching.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

To determine the approximate length of Shore Seal boom required, multiply 1.1 times the length of shoreline to be protected. Select vessels and booms according to area, water depth restrictions, and function (see Tactic L-6).

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Shore Seal Boom	ACS, KRU, MPU, Alpine	Oil exclusion	≥50 ft		1 hr	
Floating Pump and Blower	ACS, KRU, MPU, Alpine	Shore Seal inflation	1	4	1 hr	1.5 hr
Work Boat	All	Boom placement	1		1 hr	
Anchor System	All	Anchor boom	Variable		1 hr	

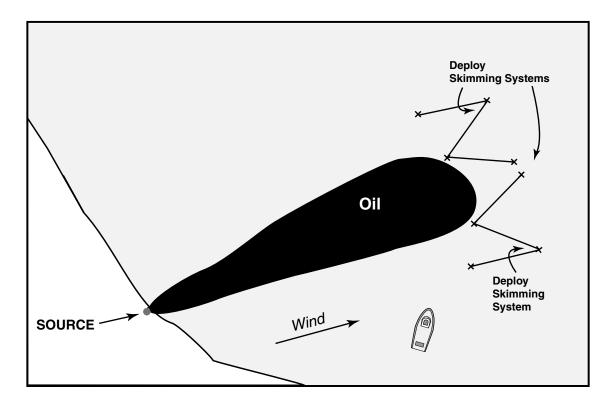
TOTAL STAFF FOR SETUP

4*

SUPPORT

Sorbents are used in conjunction with Shore Seal boom. Shovels or light excavating equipment help establish onshore anchors. Floats and chains are used in conjunction with offshore anchors.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 initial	1 hr	0.5 hr


CAPACITIES FOR PLANNING

• One response team can deploy and tend up to 1,000 ft of Shore Seal boom in a 12-hour shift.

- Shore Seal boom uses water ballast so that it can float free in high tide and seal to the intertidal shore during low tide. Shore Seal booms also protect shoreline from wave events. Shore Seal boom will adjust to changing water levels.
- When the boom is grounded, the heavy water ballast seals the boom to the shoreline and prevents oil from moving along the intertidal zone.

^{*}Recovery crews will perform maintenance.

Lengths of deflection boom are anchored in a "W" configuration. Boom sections up to 1,000 feet long are oriented at an angle to the wind and to each other. Oil encountering the center "V" of the boom becomes more concentrated at the downwind end of the configuration and is recovered with a positioned skimming system. Oil is collected from the pockets of the "V"s with a vessel with a skimmer and mini-barge.

See Tactic R-30 for boom configuration for subsea pipeline leak.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

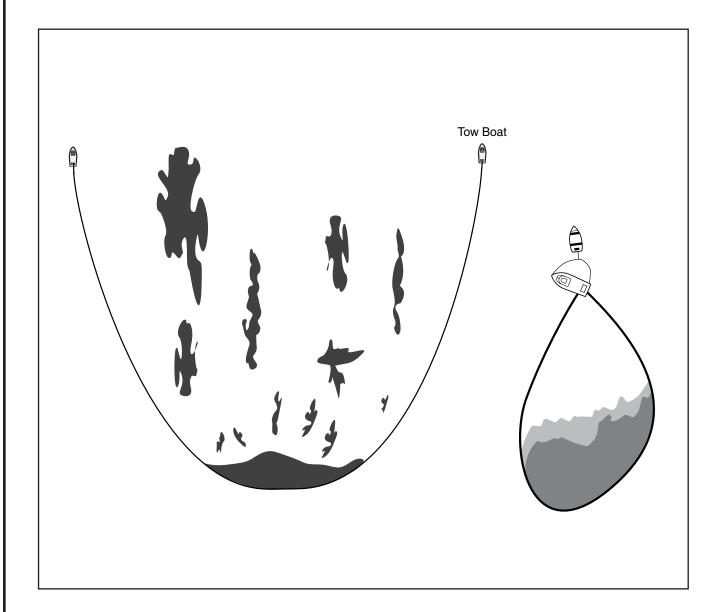
EQUIPMENT AND PERSONNEL

• Initial deployment of a section of boom and setting of anchor points involve one boat with one operator and two crew members. Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Boom	All	Spill deflection	≥300 ft		1 hr	
Work Boat	All	Deploy and tend boom	3 for setup 2 to maintain	9 for setup 6 to maintain	1 hr	6 hr
Anchor Systems	40-lb: All 66-lb: ACS	Anchor boom	Variable	o toairtair	1 hr	

SUPPORT

• An aircraft can track oil from above and coordinate the on-water task forces.


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Fuel Truck	All	Fuel	1	Once per shift	1 hr	0.5 hr

CAPACITIES FOR PLANNING

• Swath width varies with currents, wind, and the total length of booms.

- Check anchor points frequently and reposition them as necessary by lifting the crown line.
- Change the length and position of the boom as conditions change.
- See recovery tactics for information on recovery equipment used with this tactic.

The containment boom has a swath width of up to 1,000 feet. The two tow boats pull up to 3,000 feet of boom. This method can be used for temporary containment and/or transport of oil.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Select vessels and booms according to area, water depth restrictions, and function (see Tactic L-6).

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Work Boat	All	Tow boom	2	6	1 hr	0 br
Boom	All	Containment	Variable	_	1 hr	2 hr

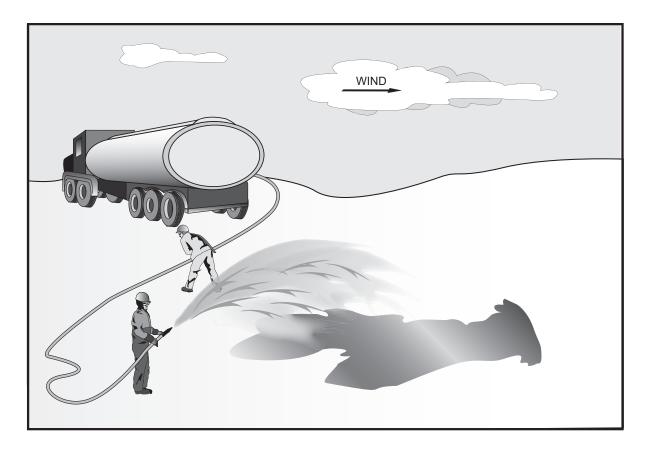
TOTAL STAFF

6

SUPPORT

• An aircraft tracks the oil from above and coordinates the on-water task forces (preferably twin-engined aircraft or single-engined aircraft on floats).

CAPACITIES FOR PLANNING


• Swath width varies with currents, wind, and the total length of boom.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

• See recovery tactis for information on recovery equipment used with this tactic.

TACTIC C-18 Containing Light Layer of Oil on Snow Using Water Spray (Page 1 of 2)

An area of lightly oiled snow can be stabilized for recovery by spraying a light water mist onto the contaminated snow to coat it with a thin layer of ice.

Containing Light Layer of Oil on Snow Using Water Spray (Page 2 of 2) TACTIC C-18

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

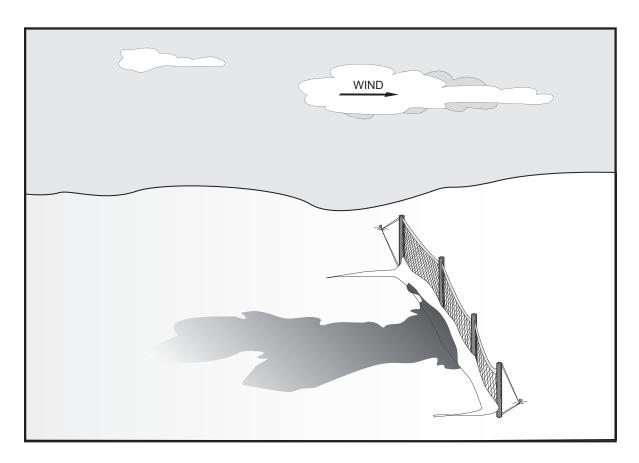
EQUIPMENT AND PERSONNEL

• The number of staff to erect snow fencing depends on the size of the contaminated area.

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Water Truck	All	Water source	1	2	2 hr	0.5 hr
or	Upright Tank (400 bbl)	KRU, Alpine	Water source	1	2	2 hr	1 hr
or	Ice Auger (when appropriate)	All	Water source	1	2	1 hr	0
	Trash Pump (2-inch)	All	Spraying system	1		1 hr	1 hr
	Suction Hose (2-inch)	All	Spraying system	≥20 ft		2 hr	1 hr
	Discharge Hose (1- or 2-inch)	All	Spraying system	≥50 ft	2	1 hr	1 hr
[Spray Nozzle	ACS	Spraying system	<u>≥</u> 1		1 hr	1 hr

TOTAL STAFF 4 to 6*

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heater	All	Support heavy equipment	≥1	1 initial setup	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr

- Covering lightly oiled snow with a thin layer of ice is a viable option only when air temperatures permit.
- A "Y" valve may be used to operated two nozzles at the same time.
- A fire truck can be used to replace the equipment systems identified above since the fire truck contains the water source and spray equipment. Personnel, mobe time, and deploy time would remain the same.

^{*}If an ice auger is used to obtain water from a surface water source, 2 staff are needed to operate the auger.

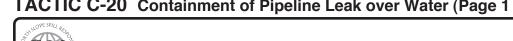
TACTIC C-19 Containment Light Layer of Oil on Snow using Snow Fence (Page 1 of 2)

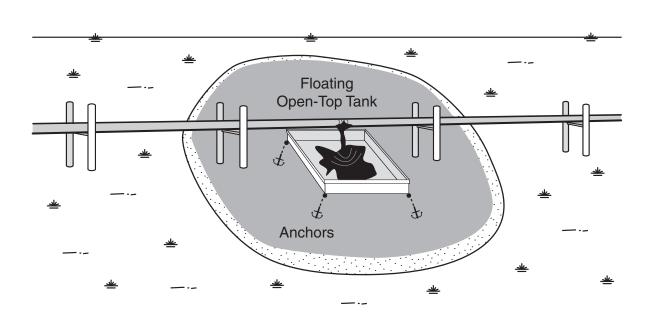
A snow fence can be erected on the downwind side of lightly oiled snow to keep the wind from spreading the contaminated snow before being recovered.

Containment Light Layer of Oil on Snow using Snow Fence (Page 2 of 2) TACTIC C-19

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Snow Fencing	ACS, KRU	Containment	Varies			Varies
T-Post Driver	ACS, KRU	Support fence	Varies	≥2* 	2 hr	
T-Posts	ACS, KRU	Support fence	Varies			
Wire Ties	ACS, KRU	Support fence	Varies			


^{*}The number of staff to erect snow fencing depends on the size of the contaminated area.

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Snow machine or ATV with trailer	All	Haul equipment	Varies	2	0.5 hr	Varies

- A temporary snow fence can be as long as needed to effect containment. The fence should be placed far enough downwind of the spill to collect drifting and migrating oiled snow. The fence should be at least 4 ft high, but can be made up to 8 ft high by double-stacking ACS' plastic 4-ft fence. The fencing itself should have at least 50% porosity. Tighten the fence as much as possible, and use T-posts, rebar, or survey lath for temporary fence posts.
- This tactic is based on information from *Controlling Blowing and Drifting Snow with Snow Fences and Road Design.*Prepared by Ronald D. Tabler, Tabler and Associates, Niwot, CO, for the National Cooperative Highway Research Program, Transportation Research Board of the National Academy. August 2003.

A floating open-top tank is deployed and anchored in place under a leaking pipeline over a body of water. This tactic is utilized mostly for leaks such as produced water, etc. It can also be utilized over tundra in conjunction with proper tundra protection.

Containment of Pipeline Leak over Water (Page 2 of 2) TACTIC C-20

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Floating Open-Top Tank	KRU	Containment	1		1 hr.	2 hrs.
Anchors	All	Securing tank	8	4		
Flat Boat	All	Tank deployment	1			
Support Boat	All	Tank deployment	1			

TOTAL STAFF

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Rig Mats	All	Tundra protection	4			
3/8" Line	All	Anchoring	300 ft.	2	1 hr.	2 hrs.
1/4" Chain	All	Anchoring	24 ft.	1		

CAPACITIES FOR PLANNING

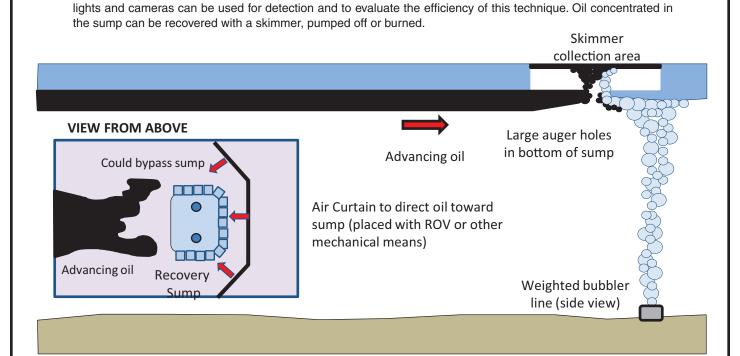
- Floating open-top tank capacity is 50 barrels.
- Time to fill to maximum capacity is dependent on the leak rate.
- · Faster rates of leakage may require continual oversight.

- Material can be recovered using tactic R-6, R-23 or R-24.
- Minimum pipeline height above the water or tundra is 12 inches.
- May require wind wall under high wind conditions.
- May require activation of tundra permit from tactic C-4, C-3.
- · Approval of State-on-Scene Coordinator and ADF&G is necessary in anadromous fish streams, etc.

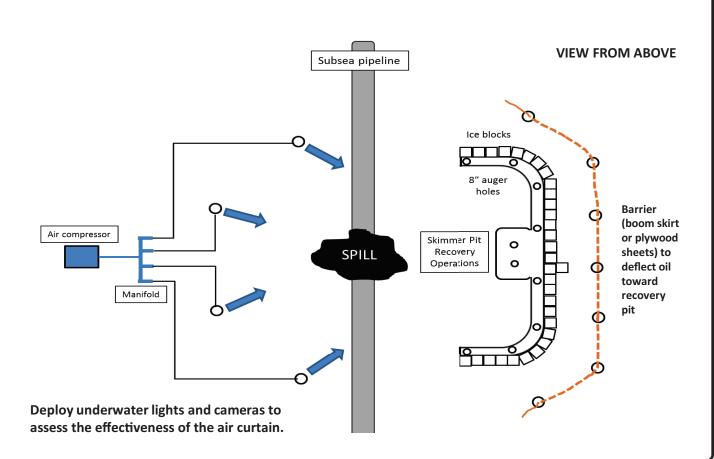
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

Example of multiple air lines connected to manifold to create a bubble ring. Flexible air line is attached to hard plastic pipe which is pushed under the ice through auger holes. Using rubber grommets or gaskets around the hard plastic pipe can help hold the pipes in the auger holes.

EQUIPMENT AND PERSONNEL


	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Air Compressor	All	Create air curtain	1	4 for setup	1 hr	1 hr
	Weighted, perforated air line	Eni	Create air curtain	50 ft	-	1 hr	1 hr
or	Manifold with multiple air lines	Eni	Create air curtain or directed air flow	4 x 25 ft hose		1 hr	1 hr
	Rube Witch w/ Chain Saw	All	Sump construction	<u>3</u>	6	1 hr	1 hr
	Ice Auger	All	Recovery	1	2	1 hr	1 hr
	Underwater Lights	All, except Badami	Detection	2	1	1 hr	1 hr
	Underwater Camera	ACS, Eni, KRU	Detection	2	1	1 hr	1 hr

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Generator	All	Electricity	2	2 for setup	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup	1 hr	0.5 hr
Portable Shelter	All	Shelter	1	4	1 hr	1 hr
Heater	All	Heat	≥1	1 initial setup	1 hr	0.5 hr

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- Check ice thickness and condition for safe bearing capacity before working on ice. The ice must be strong enough
 to support personnel and equipment. See Tactic L-7 for realistic maximum operating limitations (RMOL) for ice
 thickness and temperature.
- Personnel should use extreme caution near the open sump or when walking on ice in the vicinity of the bubbler. Ice thickness and strength will become compromised over time.

Oil trapped under the ice can be directed toward a sump cut into the ice. Once the oil is detected under the ice, a sump can be cut into the ice. Using an air compressor and a weighted, perforated air line, an air curtain can be created to keep the oil from bypassing the sump. Compressed air can also be directed at an angle underneath the ice to dislodge oil trapped in pockets and under-ice cavities.to drive the oil toward the sump in the ice. Underwater

CCS designation of

Snow provides a good sorbent material for oil and forms a mulch-like mixture that is easily removed with heavy equipment such as front-end loaders and dump trucks.

A wide-track dozer and front-end loader pile the snow, and then a loader loads it into dump trucks on nearby gravel pads, roads, or ice roads. After a loader has filled a truck, the truck hauls the oiled snow off for disposal. A Bobcat would replace the front-end loader in hard-to-reach or tight quarters.

If nearby heavily oiled snow needs blending to ease recovery, then loaders and dozers may be used to push the lightly oiled snow into the heavily oiled snow area. Mixing the lightly oiled snow with the heavily oiled snow would generate less waste.

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Wide-Track Dozer	All	Piling oiled snow	1	1	1 hr	0.5 hr
Front-End Loader	All	Transfer oiled snow into dump trucks	1	1	1 hr	0.5 hr
Dump Truck	GPB, KRU, Peak, CH2M Hill, Alpine	Transfer oiled snow to disposal site	≥2*	<u>≥</u> 2	1 hr	0.5 hr

*Number of dump trucks depends on distance to disposal area.

TOTAL STAFF

≥5 (includes 1 spotter that works with equipment to protect tundra)

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

Mechanical Recovery of Lightly Oiled Snow (Page 2 of 2) TACTIC R-1

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport wide-track dozer	1	1 driver	1 hr	0
Heater	All	Heat	≥1	1 initial setup	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support heavy equipment	1	1	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr

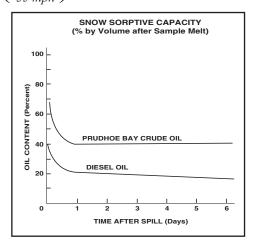
CAPACITIES FOR PLANNING

- One cubic yard of lightly oiled snow contains 0.3 bbl of oil. Snowmelters can typically handle 30 cubic yd of lightly oiled snow per hour.
- A wide-track dozer can build an initial snow berm around the largest tank spill on the Slope within an hour.
- A front-end loader with an 8-cubic-yd snow bucket can move 500 cubic yd of snow in an hour and fill a dump truck in 10 minutes. See Tactic L-6, Table 9A, for capacities of dump trucks available on the North Slope.
- Following is an example of recovery of lightly oiled snow for one 20-cubic-yd dump truck, with 2 miles between load and unload points:

$$Dump \ Truck \ Recovery \ Rate = \frac{T_C}{L_t + T_t + U_t} = \frac{20 \ cubic \ yd}{0.17 \ hr + \left(\frac{2 \ mi * 2}{35 \ mph}\right) + 0.08 \ hr} = 55 \ cubic \ yd/hr$$

$$(or 16.5 \ bbl/hr)$$

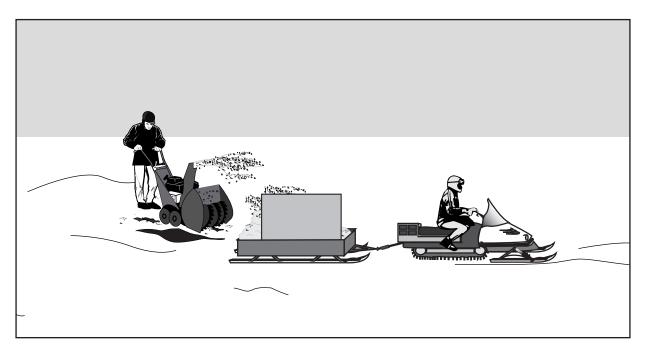
Where:


 $T_c = Truck Capacity$

 $L_t = Load Time (10 min or 0.17 hr)$

 $U_t = Unload Time (5 min or 0.08 hr)$

 $T_t = Travel\ Time\left(\frac{miles\ to\ disposal * 2}{35\ mph}\right)$


The ratio of dump trucks to loaders to fill trucks without delay = 1/(0.17 hr + 0.114 hr + 0.08 hr) = 1/(0.364) = 2.7 trucks per loader.

- This tactic is limited to oiled snow with no free liquids. Collect the top 6 inches of snow into piles for recovery. If snow cover is light or the snow will be used for blending, collect all of the snow.
- When working with equipment around or near flowlines, add a spotter to each front-end loader or wide-track dozer.
- An ice road allows dump trucks into recovery sites on tundra.

TACTIC R-1A Use of Snow Blower to Remove Lightly Misted Snow (Page 1 of 2)

Lightly misted snow can be cleaned up using a snow blower and snow machine with trailer. The snow can be cleaned up either directly off of the ground or by using brooms to sweep oiled snow into windrows for more effective recovery. Once the trailer is full, it is transferred by snow machine to a front-end loader on the gravel pad or road. The loader then transfers the snow into dump trucks on the pad or road.

EQUIPMENT AND PERSONNEL

• Crew size consists of two sweepers, a snow blower operator, and a snow machine operator. The number of crews will not exceed the number of snow blowers available.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Shovel and Broom	All	Recovery	Variable		0.5 hr	
Snow Machine with Trailer	All	Transfer	3	3	1 hr	
Snow Blower	ACS, Badami, Northstar, Alpine	Recovery	1	1	1 hr	0.5 hr
Front-End Loader (8-cubic-yd)	All	Transfer	1	1	1 hr	
Dump Truck	GPB, KRU, CH2M Hill, Peak, AIC, Alpine	Transfer	≥2	≥2	1 hr	

TOTAL STAFF ≥7

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

Use of Snow Blower to Remove Lightly Misted Snow (Page 2 of 2) TACTIC R-1A

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel oc- casionally	1 hr	
Heater	All	Heat 1 1 for initial setup		1 hr	0.5 hr	
Fuel Trailer	All	Fuel	1	1 for initial setup	1 hr	

CAPACITIES FOR PLANNING


- Snow machine trailers have a 1/2 cubic yd capacity.
- Snowmelters typically handle 30 cubic yd of lightly oiled now per hour, providing 30 bbl/hr of water, plus the oil.

- This tactic is limited to oiled snow with no free liquids.
- The number of crews on the spill depends on the size of the spill.
- · Lightly oiled snow may be blended with heavily oiled snow in the area to enhance recovery.
- Warm-up areas are needed for responders.

Broom and shovel the oiled snow into piles. The piles are then transferred with shovels to garbage cans, totes, or similar containers. Once a container is full, it is transferred with a snow machine or Argo to a front-end loader near the gravel pad or road. The loader then transfers the snow into dump trucks on the pad or road.

EQUIPMENT AND PERSONNEL

· Crew size consists of six shovelers, and the number of crews varies with the size of the spill.

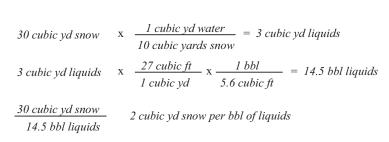
EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Shovel and Broom	All	Recovery	6	6	0.5 hr	
Snow Machine or ATV	All	Transfer	3	3	1 hr	
Front-End Loader	All	Transfer	1	1	1 hr	0.5 hr
Dump Truck	GPB, KRU, Peak, AIC, CH2M Hill, Alpine	Transfer	1	1	1 hr	

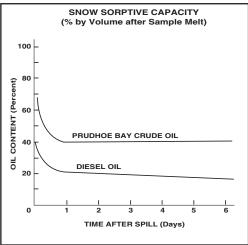
TOTAL STAFF

11 (10 if dump-truck operator loads truck)

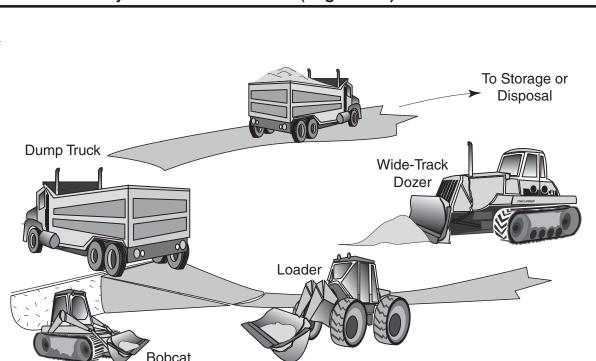
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).




SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	PIECES # STAFF PER SHIFT		DEPLOY TIME
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr
Heater	All	Heat	1	1 initial	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr


CAPACITIES FOR PLANNING

• With 6 workers, this technique can recover 30 cubic yd of snow in 10 hours (10 hours worked in a 12-hour shift), depending on weather and terrain. In cold weather a typical 12-hr work shift provides 8 labor hours from a shoveler. Because lightly oiled snow contains 0.3 bbl of oil per cubic yd of snow, one crew of 6 can recover 9 bbl of oil in 10 hours, or 0.9 bbl/hr oil.

- This tactic is limited to oiled snow with no free liquids.
- · When working with equipment around or near flowlines, add a spotter to each front-end loader.
- Manual recovery is the preferred technique when working in tight areas, when the ground is too rough for equipment, or there is insufficient snow cover for equipment.
- The number of crews on the spill depends on the size of the spill.
- The lightly oiled snow may be blended with heavily oiled snow in the area.
- Snowmelters typically handle 30 cubic yd of lightly oiled snow per hour, providing 14.5 bbl/hr of water, plus the oil.
- Warm-up areas are needed for responders.

Snow provides a good sorbent material for oil and forms a mulch-like mixture that is easily removed with heavy equipment such as front-end loaders and dump trucks. A Bobcat replaces the front-end loader in hard-to-reach or tight quarters.

Access the oiled snow with dozers and loaders, pile the snow with the dozers, and then load it into dump trucks located on nearby gravel pads, roads, or ice roads. After a front-end loader has filled a truck, the truck hauls the oiled snow off for disposal, typically to snowmelters in lined pits. If heavily oiled snow needs blending to ease recovery, loaders and dozers push nearby lightly oiled snow into the heavily oiled snow area for recovery. Clean snow can also be used for blending.

Oil in areas inaccessible by vacuum trucks or heavy equipment is recovered with sorbents and manual labor. The sorbents are collected in totes, garbage cans, or bags and transferred with snow machine, ATVs, or pickup truck to a front-end loader, which transfer the waste into a dump truck for removal and disposal. Sorbents must be placed in oily waste bags and then put in an oily waste dumpster.

EQUIPMENT AND PERSONNEL

 A dump truck requires one operator. Personnel numbers deploying and collecting sorbents vary with the size and configuration of the spill. Personnel typically work in pairs for sorbent deployment and recovery.

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Wide-Track Dozer	All	Piling oiled snow	1	1	1 hr	
	Front-End Loader	All	Transfer oiled snow into dump trucks	1	1	1 hr	
or	Bobcat	ACS, PBE, KRU, Alpine	Transfer oiled snow to loaders	1	1	1 hr	0.5 hr
	Dump Truck	GPB, KRU, Peak, AIC, Alpine	Transfer oiled snow to disposal site	2	2	1 hr	
	Snowmelter	Deadhorse, Alpine	Melt snow	2	8	2 hr	
	Sorbent	All	Recovery	Variable	Variable	0.5 hr	

TOTAL STAFF

11 (includes 1 spotter that works with equipment to protect tundra)

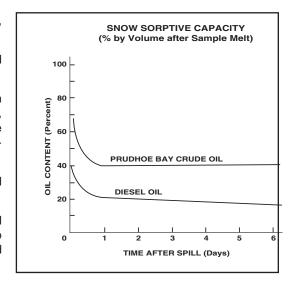
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

QCS - deske dear seds

SUPPORT

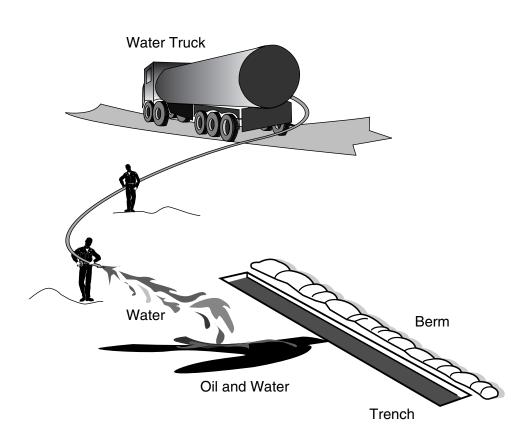
EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport wide-track dozer	1	1 driver	1 hr	0
Heater	All	Support heavy equipment	≥1	1 initial setup	1 hr	0.5 hr
Fuel Truck	Fuel Truck All Fuel heavy equipment		1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Light Plant			Variable	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr

CAPACITIES FOR PLANNING

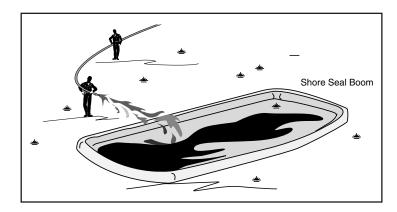

- A front-end loader with an 8-cubic-yd snow bucket can fill a dump truck in 10 minutes and move 500 cubic yd of snow per hour. The dump trucks available on the Slope typically have 10-, 20-, or 25-cubic-yd capacity. Because the front-end loaders fill dump trucks as fast as they pull into position, dump trucks are the bottleneck.
- A snow melter can process 30 yd / hour of heavily oiled snow resulting in 70 bbls/hour of recovered oil.
- One cubic yard of oil-saturated snow contains up to 2.4 bbl of oil.
- · Following is an example of recovery of oiled snow for one 20-cubic-yd dump unit:

$$Dump Truck Recovery = \frac{T_C}{L_t + T_t + U_t} = \frac{20 \text{ cubic yd}}{0.17 \text{ hr} + \left(\frac{2 \text{ mi} * 2}{35 \text{ mph}}\right) + 0.08 \text{ hr}} = 55 \text{ cubic yd/hr}$$

$$\begin{array}{ll} \textit{Example:} & \textit{T}_{\textit{C}} = \textit{Truck Capacity} \\ & \textit{L}_{\textit{t}} = \textit{Load Time (10 min or 0.17 hr)} \\ & \textit{U}_{\textit{t}} = \textit{Unload Time (5 min or 0.08 hr)} \end{array} \qquad \begin{array}{ll} \textit{T}_{\textit{t}} = \textit{Travel Time } \left(\frac{\textit{miles to disposal * 2}}{35 \textit{ mph}} \right) \end{array}$$


DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- This tactic is limited to oiled snow with no free liquids. Otherwise, lined or leak-proof dump trucks may be used.
- If the oiled snow is too saturated for handling, blend lightly oiled snow or clean snow with it, or use Tactic R-6.
- If delivery of snow exceeds snowmelter capacity, the snow can be contained in lined pits until it is processed. Existing lined pits, upright tanks, or dry ponds can be used, when available, to store snow; otherwise temporary lined pits can be constructed as necessary.
- If the dump trucks cannot access the oiled area, build an ice road to keep the loaders from traveling too far.
- After removal of free oil, oiled snow, and after flushing, contain and monitor the area until breakup. Insulate ice roads or ice berms to provide containment during breakup, when the oil can be removed with direct suction, portable skimmers, or burning.



0

FLOATING OIL WITHIN SHORE SEAL BOOM

In spring or fall, flushing is used to concentrate oil into pits or trenches, where it is collected with direct suction using a Manta Ray skimmer head, sorbents, or a portable skimming system. The pits or trenches are constructed by cutting slots in ice, utilizing natural depressions, digging into tundra or gravel with a backhoe or Bobcat, or by augmenting a depression or pit with sandbags and Shore Seal boom (see Tactic C-4). Shore Seal boom is particularly effective when frozen in place. Constructed pits or trenches are lined with Visqueen or similar plastic sheeting.

The water source for the flushing unit is either a water truck or an auger hole in the ice of a nearby lake. Flushing usually occurs after pooled areas and contaminated snow have been removed.

The flush should consist of high-volume, low-energy flushing with water less than 106°F. This is essentially a mopup technique after the majority of oil and oiled snow has been removed.

See Tactic R-7 for recovery of concentrated oil.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

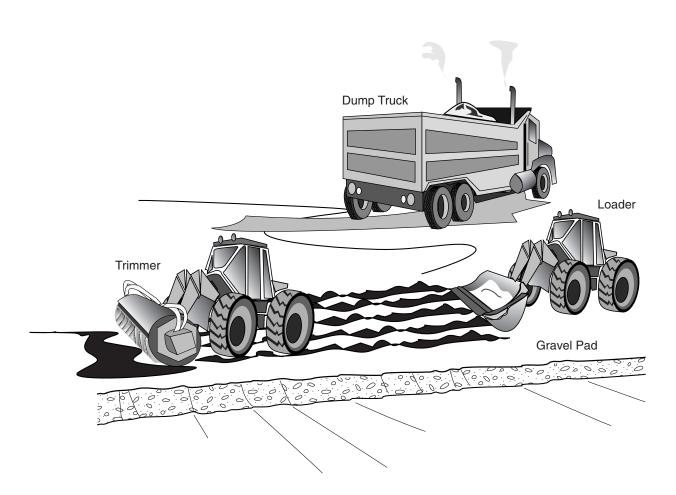
• The number of staff to deploy sandbags depends on the size of the constructed concentration area.

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Water Truck	All	Water source	1	2	2 hr	0.5 hr
or	Upright Tank (400 bbl)	KRU, Alpine	Water source	1		2 hr	1 hr
	Ice Auger	All	Water source	1	2	1hr	0
	Trash Pump (2-inch)	All	Flushing of oil	1		1 hr	1 hr
	Suction Hose (2-inch)	All	Flushing of oil	≥20 ft	_	2 hr	1 hr
	Discharge Hose (3-inch)	All	Flushing of oil	≥50 ft	_	1 hr	1 hr

TOTAL STAFF

2

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heater	All	Support heavy equipment	≥1	1 initial setup	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr

CAPACITIES FOR PLANNING

• Recovery capacity depends on the nature of the spill, the size of the concentration area, and terrain features.

- Flushing is a viable option only when air temperatures permit. Warm water (no more than 106°F) is preferred for flushing.
- Flushing works on oil contained on and in the surface of tundra, gravel, and ice, and is particularly effective on ice. The tundra can be damaged if it thaws; don't flush the same area more than 2 or 3 times or suck the tundra dry. Also, stay off the tundra that's being flushed.
- Personnel or small equipment should traverse the tundra on plywood sheets.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

A trimmer is used to recover oil embedded in the surface of a frozen pad or ice. A trimmer uses a rotary blade system to chop and collect the surface material at varying depths. The worked-over material is collected with a front-end loader and transferred to a dump truck.

A scratcher is used to break up frozen gravel or ice in areas where a trimmer cannot reach. A scratcher is a fork attachment for a front-end loader which can reach areas in tight quarters. A Super Sucker may also be used to remove a thin top layer.

Where the embedded oil is not recovered, the area is stabilized and the perimeter bermed and sealed, and monitored until breakup. Breakup is accelerated in the contained area by placing a layer of black Visqueen over it. The Visqueen is lifted as necessary, and the pools of oil removed with direct suction, portable skimmers, or burning.

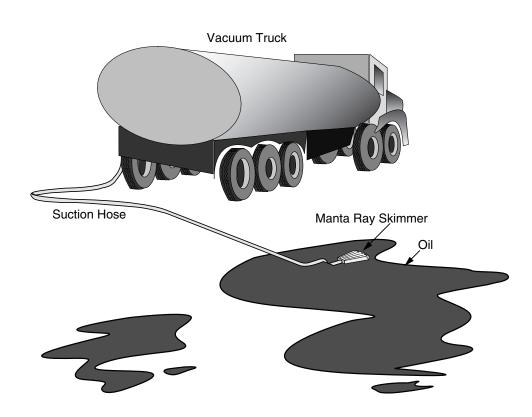
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Trimmer (Loader- mounted, 10-ft wide)	Peak	Recovery of frozen surface material	1	1	2 hr	0.5 hr
or	Trimmer (Bobcat- mounted, 2-ft wide)	ACS, KRU, Alpine	Recovery of frozen surface material	1	1	1 hr	0.5 hr
or	Front-End Loader w/ Scratcher and Bucket	All	Transfer oiled snow into dump trucks	1	1	1 hr	0.5 hr
or	Backhoe	GPB, KRU, Peak, AIC, Alpine	Recovery of frozen surface material	1	1	2 hr	0.5 hr
or	Super Sucker	Peak, CH2M Hill, Alpine	Recovery of frozen surface material	1	2	1 hr	0.5 hr
	Dump Truck	GPB, KRU, Peak, AIC, Alpine	Transfer oiled snow to disposal site	≥2	≥2	1 hr	0.5 hr

TOTAL STAFF

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport heavy equipment	1	1 driver	1 hr	0
Heater	All	Support heavy equipment	≥1	1 initial setup	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr

CAPACITIES FOR PLANNING

- A front-end loader can fill a dump truck in 30 minutes. The average dump truck available on the Slope has a 20-cubic-yd capacity.
- One cubic yard of oiled gravel contains 0.125 bbl of oil.
- A Super Sucker uses an 8-inch hose and can recover 14 cubic vd of gravel in one hour. The storage capacity of a Super Sucker is 65 bbl or 14 cubic yd. A Super Sucker can also be reduced to 6-inch, 4-inch, or 2-inch hose, and "Ys" allow the use of more than one hose.
- The speed of a trimmer operation depends on many variables, including depth of contamination, hardness of surface, and size of trimmer.

- · A trimmer is preferred over a backhoe to remove frozen gravel. When gravel is loose enough, a backhoe or frontend loader may be used.
- Removal of oil embedded in tundra can be achieved by removing the tundra or burning it out with weed burners. Alternatively, the tundra can be contained and monitored until breakup when oil melts out, allowing recovery with direct suction, portable skimmers, or burning.
- A civil work permit from the operator is required for work on a pad.

For spills off pad or road, a vacuum truck can effectively reach out 200 feet. If the oil is pooled on water, a Manta Ray skimmer head is attached to the hose extending from the vacuum truck. The hose or skimmer head is placed in the pooled oil for recovery. SRT staff man the hose or skimmer head and move it to other pooled areas as necessary. A Super Sucker can also be used for direct suction.

Archimedes screw pumps or 4-inch trash pumps can also be used for this task since they can move oil more than 200 feet, and could either pump the pooled oil into vacuum trucks on a pad/road, into holding tanks, or into the slop oil tank at a nearby production facility.

Free oil can be recovered from any pooled area including natural depressions, barriers, constructed trenches, or containment dikes.

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Vacuum Truck	All	Direct suction	1	2	1 hr	0.5 hr
or	Archimedes Screw Pump	ACS	Direct suction	1	2	1 hr	0.5 hr
or	Trash Pump (4-inch)	ACS, GPB, Alpine	Direct suction	1	2	1 hr	0.5 hr
	Suction Hose (4-inch)	ACS, PBW, Alpine	Transfer	≥20 ft	2 for setup	2 hr	0
	Discharge Hose (4-inch)	ACS, PBW, KRU, Alpine	Transfer	≥50 ft	_	1 hr	0
	Manta Ray Skimmer Head (optional)	GPB, KRU, ACS,MPU, Alpine	Direct suction	1	_	0.5 hr	0
	Upright Tank (400 bbl)	KRU, Alpine	Store fluids	1	1 initial	2 hr	1 hr

TOTAL STAFF ≥3

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

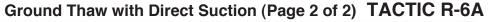
SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heater	All	Support heavy equipment	≥1	1 initial setup	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support heavy equipment	1	1	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr

CAPACITIES FOR PLANNING

- The typical suction rate for liquids by a vacuum truck is 200 bbl/hr in the summer and 150 bbl/hr in the winter. The typical suction rate for pooled diesel remains at 200 bbl/hr year round. (Vacuum truck recovery rate is reduced to about 34 bbl/hr if a Manta Ray skimmer is used.)
- Vacuum truck recovery of pooled oil with one unit equals:

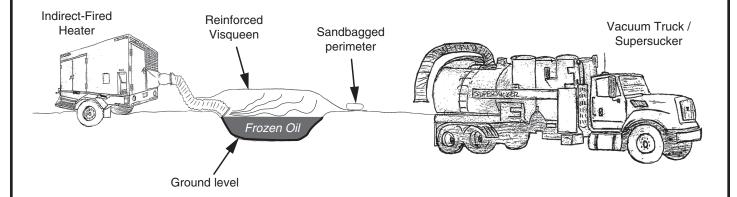
Time =
$$\left(\frac{\text{miles to disposal} * 2}{35 \text{ mph}}\right) + 2\left(\frac{T_c}{S_r}\right)$$
 $ORR = \left(\frac{\text{Vac Truck Capacity}}{\text{Time}}\right)$


 $T_c = Vac Truck Capacity (bbl)$

 $S_t = Suction \ Rate = 150 \ bbl/hr \ of \ oil \ in \ winter; \ 200 \ bbl/hr \ of \ oil \ in \ summer \ (and \ for \ diesel)$

Example of ORR for a 300 bbl vac truck: $ORR = \left(\frac{300 \text{ bbl}}{4 \text{ 6 hr}}\right) = 65 \text{ bph}$

$$T = \frac{(10 \text{ mi} * 2)}{35 \text{ mph}} + 2 \frac{(300 \text{ bbl})}{150 \text{ bph}} = 4.6 \text{ hr}$$


- Vacuum trucks provide efficient spill recovery, unless vehicle access is prohibited or not possible, the spill is unpumpable (highly viscous, cold or weathered), the spill is in a thin layer, or debris will clog the recovery line.
- Identify the disposal facility to be used before calling out a vacuum truck.
- Viscous liquids accessible within 200 ft by a vacuum truck are recovered with direct suction of that vacuum truck.
 Access could be made available to areas in the winter with ice roads. Pooled areas could be in natural depressions or in constructed trenches.
- Vacuum trucks can access pooled diesel up to 400 ft away from the truck.
- Use of Manta Ray skimmers with vacuum trucks decreases recovery capacity.
- Super Suckers are available to remove liquids with solids that vacuum trucks cannot handle. See Tactic R-5 for more details.
- · With a trash pump, the suction head must be completely submerged.
- · Since an Archimedes screw pump is submersible, oil must be deep enough for effective pumping.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

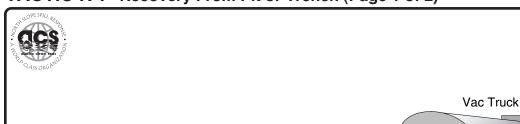
Use of direct heat to thaw frozen ground for access and removal of surface materials. There are several uses for ground thaw including removal of surface materials or to access buried pipes and trench boxes. The heat source is usually some type of indirect fired heater and the heat is ducted under some type of plastic membrane that is held in place with sand bags. Rate ofthaw is variable and is dependent on exhaust temperature from indirect fired heater and ambient air temp.

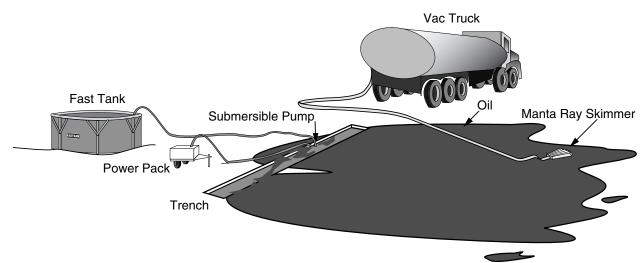
Care must be taken to ensure that the use of this tactic does not create a potentially hazardous atmosphere if flammable or toxic materials are involved.

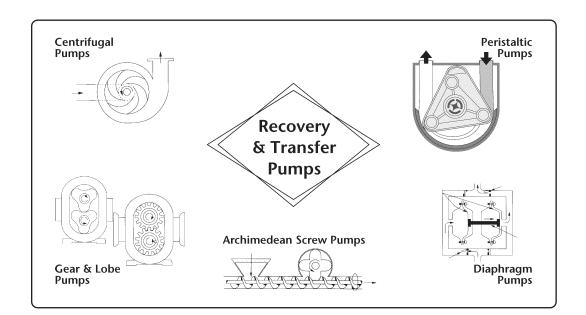
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Loader	All	Place thaw mat	1	1	1 hr	1 hr
Thaw Unit	KRU, DH	Ground thaw	2	2	1 hr	1 hr
Super Sucker	All	Recover material	1	2	1 hr	1 hr
Visqueen	All	Ground cover	1	2 for setup	1 hr	1 hr
Sand Bags	All	Anchors	1 per 4'	2 for setup	1 hr	1 hr


SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heater	All	Heat	1	1 for setup	1 hr	0.5 hr
Fuel Truck	All	Fuel	1	Once per shift	1 hr	0.5 hr
Light Plant	All	Illumination	1	1 for setup	1 hr	0.5 hr


CAPACITIES FOR PLANNING

• Rate of thaw is variable and is dependent on exhaust temperature from indirect fired heater or radiant heat from ground matt and ambient air temp.

ACS Tech. Manual Vol. 1, 12/17

An excavated trench is used to intercept the flow of a spill or divert the flow around a sensitive area (see Tactic C-4). Dig the trench at right angles to the flow of the spill. The trench should be angled slightly downslope (in the direction of surface flow) to avoid excessive pooling in the trench.

Place excavated material on the downhill side of the trench. In areas with a low water table, line the sides and bottom of the trench with plastic sheeting or similar impermeable materials. Where the groundwater table is high, line the downhill side of the trench.

The trench can be flooded with water to inhibit spill penetration into sediments and to stimulate flow toward the recovery device in the trench or pit.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

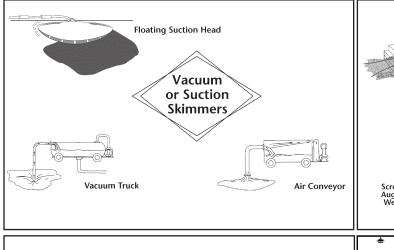
EQUIPMENT AND PERSONNEL

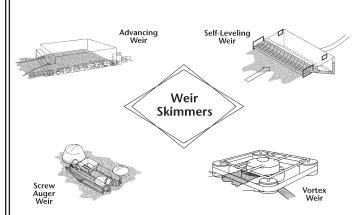
	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Vacuum Truck	All	Recovery	1	2	1 hr	0.5 hr
	Manta Ray Skimmer Head	GPB, KRU, ACS, MPU, Alpine	Direct suc- tion	1	_	0.5 hr	0
or	Archimedes Screw Pump	ACS	Recovery	1	2	1 hr	
or	Peristaltic Pump (2-inch)	ACS, Alpine, KRU	Recovery	1	2	1 hr	
or	Trash Pump (3-inch)	All	Recovery	1	2	1 hr	
or	Diaphragm Pump (3-inch)	All	Recovery	1	2	1 hr	
or	TransVac	ACS, PBW	Recovery	1	2	2 hr	1 hr
	Portable Tank	All	Storage	1	2 for setup	1 hr	
	Suction Hose (2-inch)	All	Transfer	≥20 ft	_	2 hr	
	Suction Hose (3-inch)	All	Transfer	≥20 ft	_	2 hr	
	Discharge Hose (3-inch)	All	Transfer	≥50 ft	2 for setup	1 hr	

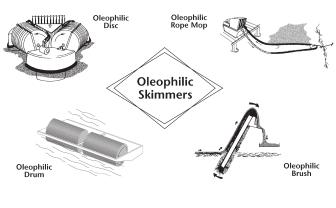
TOTAL STAFF FOR SETUP 4 (2 if only vacuum truck used)
TOTAL STAFF TO SUSTAIN OPERATIONS 2

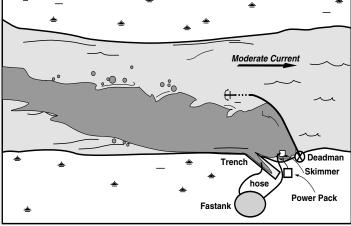
SUPPORT

EQUIPMENT	BASE LOCATION	I FUNCTION I DIFCES I		MOBE TIME	DEPLOY TIME	
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr
Semi and Trailer	GPB, KRU, Alpine, ACS	Haul backhoe	1	1	1 hr	0


CAPACITIES FOR PLANNING


• Vacuum truck recovery rate: 200 bbl/hr, 150 bbl/hr winter (reduced to 34 bbl/hr if a Manta Ray skimmer is used with the vacuum truck). Remains at 200 bbl/hr year-round for pooled diesel.


- Disposal of construction material should be taken into account before using this tactic.
- Do not excavate an interception trench in an area where the excavation will cause more damage than the spill itself. Before excavating in tundra, check for the presence of groundwater or permafrost. Do not excavate into frost-laden (cemented) soils, since disruption of the permafrost could accelerate thermal erosion. The depth of the trench is limited by the depth of the permafrost.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- On pads, check for buried pipe and/or cables prior to excavation. Obtain a civil work permit from the operator.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.


TACTIC R-8 Use of Portable Skimmers with Pumps (River and Lake) (Page 1 of 2)

Portable skimmers are easily mobilized, transported, and deployed and can be used in most spill situations for recovery. They can be used to recover oil from containment areas such as the apex of a diversion boom or natural or artificial deadarms. The typical portable skimming system includes:

- Skimmer, pump, or skimmer/pump (with fuel) with power pack
- Hose (suction and discharge with fittings)
- Storage container (tank truck, storage bladder, barrels, Fastank, etc.)

Portable skimmers can be deployed on land or from small boats to recover oil contained on water.

A weir skimmer has a "lip" or weir at its intake over which liquids flow into the skimmer pump. The user can adjust the working depth of the weir. Weir skimmers will pick up any product on water, including emulsified and weathered product; however, they recover more water than oil in thin oil layers. (Avoid using a centrifugal pump since emulsification will occur.)

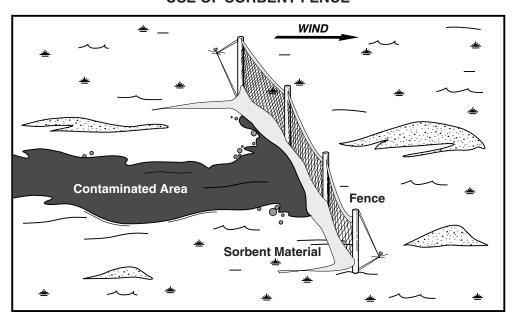
Oil adheres to an oleophilic skimmer, while water is repelled. These skimmers include rotating disks, rotating drums, or endless belts (including rope mop). Brush and rope mop skimmers can be effective in any oil thickness, while disk and drum skimmers require fresh oil. (Any pump can be used as long as the pump rate can be adjusted so as not to exceed the recovery rate of the skimmer.)

Use of Portable Skimmers with Pumps (River and Lake) (Page 2 of 2) TACTIC R-8

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Typically, portable skimmers require 2 persons for setup and 1 or 2 to operate.


SUPPORT

· Portable tanks, bladders, Rolligon with tank, mini-barge possible.

- Portable skimmers are initially used to pick up concentrations of oil, then are used in containment areas. The skimmers can be land-based or deployed from boats, and require power packs (a jon boat can be used for the power pack). When requesting a skimmer, always ask for the total skimming system.
- The only differences in equipment or techniques for road access or no road access are logistical in nature.
- Position the skimmer or pump with suction hose in area of heaviest spill concentration. Make sure intake end of hose is fitted with a screen. Do not use a centrifugal pump with a weir skimmer.

USE OF SORBENT FENCE

Sorbent pads and rolls can be used onshore to remove small pools of liquid or oil layers on rocks or man-made structures. If the spill is at the shoreline, sorbent boom can be deployed and backed up with conventional containment boom as necessary to keep the oil from drifting away.

Sorbents can be used with Shore Seal boom or fences to create an oil absorbent barrier.

Place oiled sorbents in plastic bags marked "oily waste" for removal and disposal. Larger quantities can be placed in barrels or debris boxes. Minimize the amount of sorbent material used. Oily sorbent bags must be placed in oily waste dumpsters.

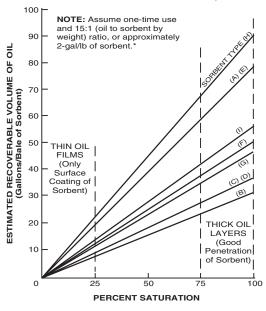
EQUIPMENT AND PERSONNEL

• Personnel requirements depend on the nature and area of oil contamination. Personnel typically work in pairs for sorbent deployment and recovery. Additional personnel are required for loaders, dump trucks, vessel, etc.

EQUIPMENT	BASE LOCATION
Sorbent Boom (8 inch)	All
Double Sorbent Boom (8 inch)	ACS
Sorbent Boom (4 inch)	All
Double Sorbent Boom (4 inch)	ACS
Sorbent Pad (18 x 18 inch)	All
Sorbent Sweep (18 x 18 inch)	All
Sorbent Pad (36 x 36 inch)	All
Sorbent Roll (36 inch x 150 ft)	All
Pom Pom	ACS, PBW

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

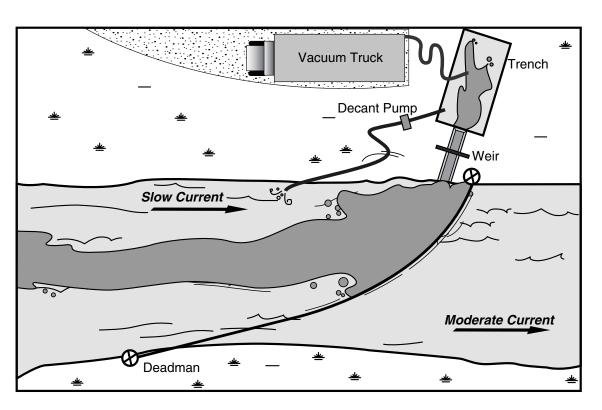
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

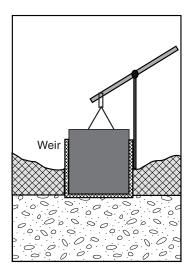

SUPPORT

 Support equipment may include heavy-duty plastic bags and liners, shovels, rakes, poles with gripping claws, pitchforks with wire mesh, and heavy equipment.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Rake	All	Recovery	≥1	1 per	1 hr	0
Pitchfork w/Screen	All	Recovery	≥1	1 per	1 hr	0
Shovel	All	Recovery	≥1	1 per	1 hr	0
Oily Waste Bag	All	Disposal	≥1 Box	_	1 hr	0
Fencing Material	All	Containment	Variable	2	1 hr	2 hr

CAPACITIES FOR PLANNING


COMMON SORBENT PACKAGING CHARACTERISTICS (For Fibrous Polypropylene Products)


Sorbent Type	Dimensions	Units/Bale	Approximate Weight (Pounds/Bale)
(A) Rolls	3/8" x 36" x 150'	1 Roll	38
(B) Sweeps	3/8" x 19" x 100'	1 Sweep	15
(C) Sheets	3/16" x 18" x 18"	200 Sheets	18
(D) Sheets	3/8" x 18" x 18"	100 Sheets	18
(E) Sheets	3/8" x 36" x 36"	50 Sheets	38
(F) Particulate	_	1 Bag	25
(G) Pillows	5" x 14" x 25"	10 Pillows	23
(H) Booms	8" Diam. x 10' Long	4 Booms	44
(I) Double Booms	5" Diam. x 10' Long	4 Double Booms	28

^{*} Ratio of oil weight to sorbent weight at saturation may be as low as 10:1 for light oils (e.g., avgas, JP-4, and gasoline) and greater than 20:1 for heavy lube oils and Bunker C.

- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- Use of sorbents should be minimized because of disposal problem.
- Sorbent wringers can be used to extend the life of sorbents.
- Do not use Pom Poms in conjunction with pumping.
- Sorbents work well on fresh crude, light refined oils, and thick sheens, but are only partially effective on solidified
 or weathered oil, highly viscous oil, very thin sheens, or emulsified oil. Sorbent products are ineffective unless all
 layers become saturated when in contact with spilled product. Use sorbent boom when overland flow is minor,
 and terrain has low slope or is wetland.
- · Hay bales could be deployed in place of or in conjunction with sorbent material.

The Fairchild gate weir provides a closable opening for an existing storage trench or deadarm along a river bank. Oil moving on the river is deflected so that it enters the recovery weir into the storage area, and the liquid flow can be controlled as necessary.

A 3- or 4-inch trash pump is used to decant fluids back upstream into the boomed area. This will allow for greater storage capacity in the trench area.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

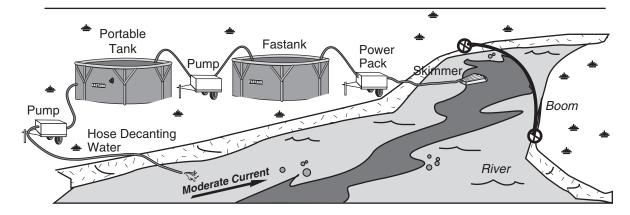
- Select vessels and boom according to area, water depth restrictions, and function (see Tactic L-6). Specific personnel requirements depend on the length and type of boom and the nature of the area.
- Equipment and personnel required to set up and maintain boom are listed in the applicable containment tactic.

EQUIPMENT BASE LOCATION		FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Backhoe	GPB, KRU, Peak, AIC, Alpine	Trenching	1	1	2 hr	
Vacuum Truck (300-bbl)	All	Recovery	1	1	1 hr	
Slide Gate Weir System	KRU	Recovery	1	2	1 hr	
Trash Pump (4-inch)	ACS, GPB, Alpine	Decanting	1	1	1 hr	3 hr
Suction Hose (4-inch)	ACS, PBW, Alpine	Liquid transfer	≥20 ft	2 for setup	2 hr	
Discharge Hose (4-inch)	ACS, PBW, KRU, Alpine	Liquid transfer	≥50 ft	_	1 hr	

TOTAL STAFF FOR SETUP 7
TOTAL STAFF TO SUSTAIN OPERATIONS 5

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr


CAPACITIES FOR PLANNING

- The typical suction rate for liquids by a vacuum truck is 200 bbl/hr in the summer and 150 bbl/hr in the winter. The typical suction rate for pooled diesel remains at 200 bbl/hr year round. (Vacuum truck recovery rate is reduced to 34 bbl/hr if a Manta Ray skimmer is used.)
- For planning purposes, 80% of the liquid passing over the gate is oil and 20% is free water. The responder adjusts the moveable gate to maximize oil flow into the containment area and minimize water flow through the weir.

- Use an existing trench or deadarm. If necessary, dig a new one or modify an existing one.
- · Disposal of construction material should be taken into account before using this tactic.
- Do not excavate where excavation will cause more damage than the spill. Before excavating in tundra, check for
 the presence of groundwater or permafrost. Do not excavate into frost-laden (cemented) soils, since disruption of
 the permafrost could accelerate thermal erosion. The depth of the trench is limited by the depth of the permafrost.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

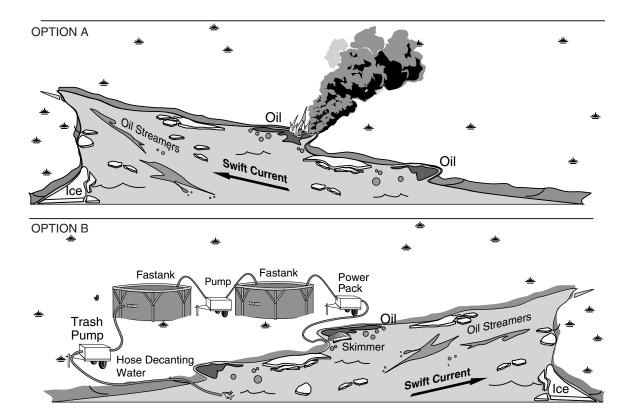
NOTE: This illustration depicts a typical deployment for this tactic. See Tactic R-8 for recovery equipment.

When oil is being skimmed from the water surface, it is likely that considerable volumes of water will be recovered as well. Decanting excess water from oily water storage is an important tool to reduce the volume of oil water that must be taken for disposal.

Oily water is pumped to a primary storage tank such as a Fastank or larger tanks. As the water separates, it can be pumped back into the containment area on the water.

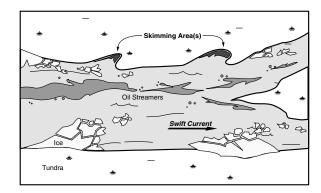
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL


• Equipment and personnel required to set up and maintain boom are listed in the applicable containment tactic.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Small Stationary Skimmer System	ACS, GPB, KRU, Endicott, Alpine	Recovery	1	1	1 hr	
Pump (3-inch)	All (ACS, MPU, Alpine have diesel)	Transfer	1	1	1 hr	
Suction Hose (3-inch)	All	Transfer	≥20 ft	_	1 hr	
Discharge Hose (3-inch)	All	Transfer	≥50 ft	2 for setup	1 hr	0.5 hr
Pump (2-inch)	All	Decanting	1	1	1 hr	
Portable Tank	All	Temporary storage	2	2 for setup	1 hr	
Suction Hose (2-inch)	All	Decanting	≥20 ft	1	1 hr	
Discharge Hose (2-inch)	All	Decanting	≥50 ft	1	1 hr	

TOTAL STAFF FOR SETUP 5
TOTAL STAFF TO SUSTAIN OPERATIONS 3


- · Gravity flow is the best method for decanting water from a tank.
- Ensure decanting operation is constantly monitored to ensure only water is decanted.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- Consider use of valves on discharge hoses.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

Tactical options are limited during the aggressive river breakup period when currents are strong from bank to bank, large pieces of ice are flowing in the river, and it is not safe to deploy airboats or other vessels. Personnel will not be placed at risk to deploy any containment or recovery equipment in the river channel.

The overall strategy is to go downstream from the point where the spill is entering the water to look for mechanical recovery or burn opportunities in quiet-water areas along the stream banks where boom could be deployed. The Heli-torch can be used to ignite inaccessible oil pockets, while skimmers and pumps or vacuum trucks can be used where road access is available.

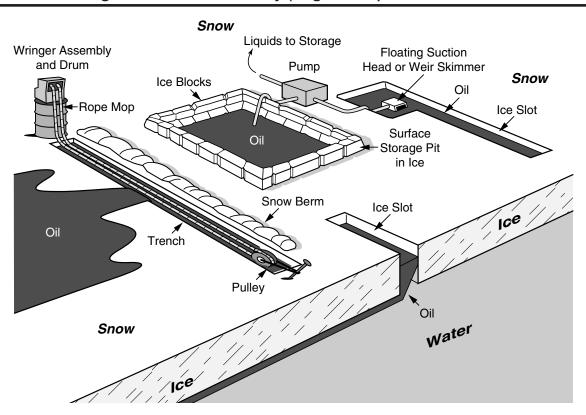
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

OPTION A

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heli-torch (55 gal)	ACS	Ignition	2	2 for setup	1 hr	
Helicopter with FAR Part 137 Approved Pilot	Alyeska	Sling-load Heli-torch	1	1	2 hr	
Hand-held Igniter	ACS	Ignition	<u>≥</u> 6	1	1 hr	2 hr
Gelled Fuel	ACS	Firestarter Material	≥5 lb.	_	1 hr	
Fire Extinguisher	All	Suppress accidental fires	>2	_	0.5 hr	
Batch Mixer (300 gal)	ACS, KRU	Mix gel	1	2	1 hr	

TOTAL STAFF WITH HELI-TORCH 3
TOTAL STAFF WITH HAND-HELD IGNITERS 2


OPTION B

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Small Stationary Skimmer System	All	Recovery	1	1	1 hr	
Diaphragm Pump (3-inch)	All (ACS, MPU, Alpine have diesel)	Transfer	1	1	1 hr	
Suction Hose (3-inch)	All	Recovery	2 <u>></u> 20 ft	2 for setup	2 hr	3 hr
Discharge Hose (3-inch)	All	Recovery	2 <u>></u> 50 ft	_	1 hr	
Trash Pump (2-inch)	All	Decanting	1	1	1 hr	
Portable Tank	All	Temporary Storage	2	2 for setup	1 hr	

TOTAL STAFF FOR SETUP 5
TOTAL STAFF TO SUSTAIN OPERATIONS 3

- Oil will tend to be naturally dispersed by the water's turbulence and by adherence to silt and sinking.
- Two people are needed to mix gelled fuel for the Heli-torch and to attach it to the helicopter.
- Batch mixer can be used for mixing large amounts of gelled fuel for Heli-torch.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which
 must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or
 any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented
 and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and
 biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic
 can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of
 plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

Oil moving both on the surface of ice and underneath it can be concentrated in slots cut in the ice and recovered by skimming with rope mops or other types of skimmers. If the oil in the slot is thick enough, it can be removed using weir skimmers or direct suction.

Oil entrained in subsurface pockets can be reached by drilling holes with ice augers and pumping the oil directly to storage containers such as drums or bladders. Temporary storage can also be provided by excavating shallow pits in the ice surface using chain saws and chipper bars. These oil concentrations can be pumped off or burned.

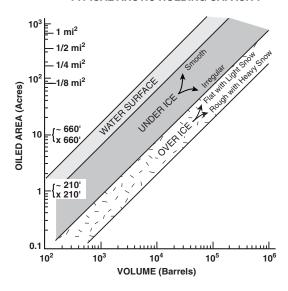
EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Rube Witch w/Chain Saw	All	Trenching	3	6	1 hr	0.5 hr
or	Ice Auger	All;	Recovery hole	1		1 hr	0.5 hr
	Rope Mop (4-inch)	All	Recovery	1		1 hr	1 hr
	Small Stationary Skimmer System	All	Recovery	1	4	1 hr	1 hr
	Portable Shelter (10x12)	All	Shelter	1		1 hr	1 hr
	Pump (3-inch)	All	Recovery	1		1 hr	0.5 hr
	Suction Hose (3-inch)	All	Recovery	2 ≥20 ft	2 for setup	2 hr	0.5 hr
	Discharge Hose (3-inch)	All	Recovery	2 ≥50 ft	_	1 hr	0.5 hr
	Generator	All	Rope mop power	1	2 for setup	1 hr	0.5 hr
	4-Wheeler w/Plow	All, except Badami, MPU and ACS	Berming	2	2	1 hr	0.5 hr

TOTAL STAFF FOR SETUP AND TRENCHING 12
TOTAL STAFF TO SUSTAIN OPERATIONS 3

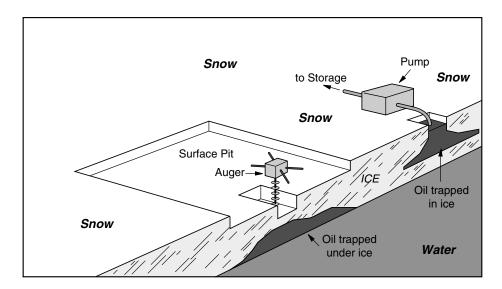
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

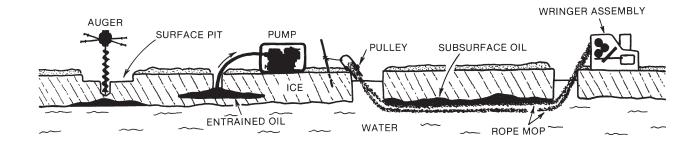
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).



SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Mechanic Support	All	Support Equipment	1	1	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr
Heater	All	Heat	<u>≥</u> 1	1 initial setup	1 hr	0.5 hr


CAPACITIES FOR PLANNING


TYPICAL ARCTIC HOLDING CAPACITY

- Check ice thickness for safe bearing capacity before working on ice. The ice must be sufficiently strong to support personnel and heavy equipment. See Tactic L-7 for realistic maximum operating limits (RMOL) for ice thickness and temperature. Also, ensure ice can withstand extra load of oil and snow on the surface without either breaking the ice or forcing oil to migrate through existing cracks. Extreme care must be taken when positioning or operating any heavy equipment close to trenches or slots in the ice. Stresses in the ice for a given load can double under these situations. Ensure that oil that accumulates in an ice trench is continually removed. If allowed to build up to a thick layer, some oil may escape the ice slot.
- "In-ice" trenches do not extend through the ice and contain spills flowing over the ice surface. "Through-ice" or slots or trenches extend through ice to free water to contain spills moving under the ice.
- Ice trenches can be configured in "U" shapes or herringbone patterns to contain oil. Remove cut ice blocks in 1-cubic-ft pieces and place on side opposite oil. The width of the trench should not exceed 4 ft.
- · Use of Rube Witch chain saw is labor-intensive.
- Use of heat will make the rope mop and pump more effective.

A sump is cut in the ice around a hole augered through the ice to pockets of oil under the ice or encapsulated in the ice. The oil is pumped directly from the sump to temporary storage containers. A heated shelter can be erected over the sump

Another option involves deploying rope mop through holes in the ice to recover oil trapped in under-ice depressions. Two holes are drilled in the ice using ice augers or chainsaws, and the rope mop is strung under the ice between the holes.

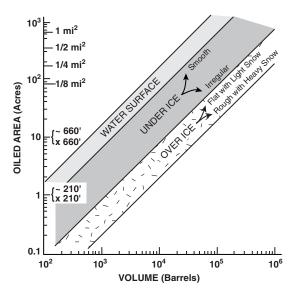
EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Rube Witch w/Chain Saw	All	Sump construction	3	6	1 hr	0.5 hr
Portable Shelter (10x12)	All	Shelter	1		1 hr	1 hr
Ice Auger	GPB, KRU, ACS, Endicott, Alpine	Recovery hole	1	4	1 hr	0.5 hr
Rope Mop (4-inch)	All	Recovery	1		1 hr	1 hr
Pump (3-inch)	All	Recovery	1		1 hr	0.5 hr
Suction Hose (3-inch)	All	Recovery	2 <u>></u> 20 ft	2 for setup	2 hr	0.5 hr
Discharge Hose (3-inch)	All	Recovery	2 ≥50 ft	<u>—</u>	1 hr	0.5 hr

TOTAL STAFF FOR SETUP ≥10
TOTAL STAFF TO SUSTAIN OPERATIONS 4

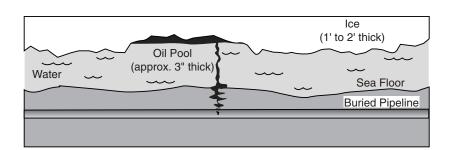
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

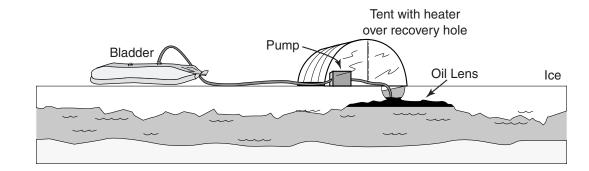
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

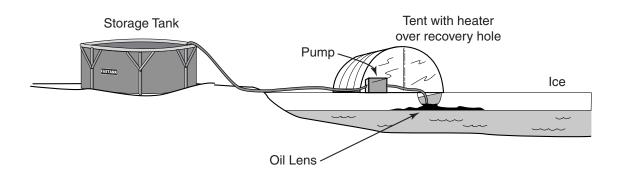

SUPPORT

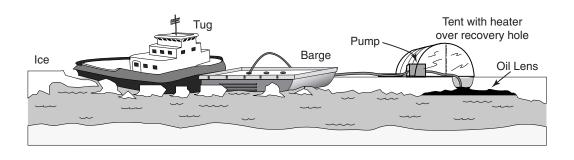
EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heater	All	Heat	1	1 initial setup	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr

CAPACITIES FOR PLANNING


• Depending on the thickness of a trapped oil pool, a single sump or auger hole may drain a very small lateral area. Repeated holes may have to be drilled at a close spacing to recover most of the oil. This technique is most effective for thicker oil pockets on the order of 4 to 6 inches or more. Thin oil lenses in the ice on the order of 2 to 3 inches or less may not drain effectively to individual holes.


TYPICAL ARCTIC HOLDING CAPACITY




- Heat inside the shelter will make the rope mop and pump more effective.
- Use of the Rube Witch with chain saw is labor-intensive.
- Check ice thickness for safe bearing capacity before working on ice. The ice must be sufficiently strong to support personnel and heavy equipment. See Tactic L-7 for realistic maximum operating limits (RMOL) for ice thickness and temperature. Also, ensure ice can withstand extra load of oil and snow on the surface without either breaking the ice or forcing oil to migrate through existing cracks. Extreme care must be taken when positioning or operating any heavy equipment close to trenches or slots in the ice. Stresses in the ice for a given load can double under these situations. Ensure that oil that accumulates in an ice trench is continually removed. If allowed to build up to a thick layer, some oil may escape the ice slot.

Oil trapped under solid ice or in a lens within solid ice can be removed by augering into the oil lens and pumping out the oil. If the ice is thick enough to support heavy equipment, the oil can be pumped directly into bladders or other portable tanks and hauled to shore. In the case of thin nearshore ice, the oil can be pumped to storage containers on shore. Finally, if the site can be reached by an ice-strengthened tug-and-barge combination, the oil can be pumped directly into the barge.

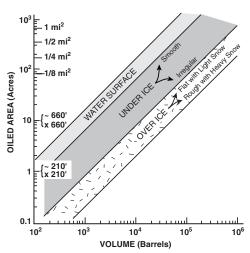
A heated portable shelter should be placed over the auger holes to protect personnel and pumps.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Ice Auger	ACS, GPB, KRU, Endicott, Alpine	Recovery	1	2	1 hr	0.5 hr
	Portable Shelter (10x12)	All	Shelter	1	3 for setup	1 hr	1 hr
	Pump (3-inch)	All	Recovery	1	1	1 hr	0.5 hr
	Suction Hose (3-inch)	All	Recovery	2 <u>≥</u> 20 ft	2 for setup	2 hr	0 hr
	Discharge Hose (3-inch)	All	Recovery	2 <u>≥</u> 50 ft		1 hr	0 hr
	Tank Bladder	ACS, PBW	Storage	1	-	1 hr	1 hr
or	Portable Tank	All	Storage	1	2 (initial)	1 hr	0.5 hr
or	Barge	West Dock	Storage	1	8	4 hr	6 hr
	Tug	West Dock	Tow barge	1	4	2 hr	0 111

TOTAL STAFF FOR SETUP
TOTAL STAFF TO SUSTAIN OPERATIONS


≥4 (12 if barge used) 2 (12 if barge used)

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT		DEPLOY TIME
Heater	All	Heat	1	1 initial setup	1 hr	0.5 hr
Light Plant All		Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr

CAPACITIES FOR PLANNING

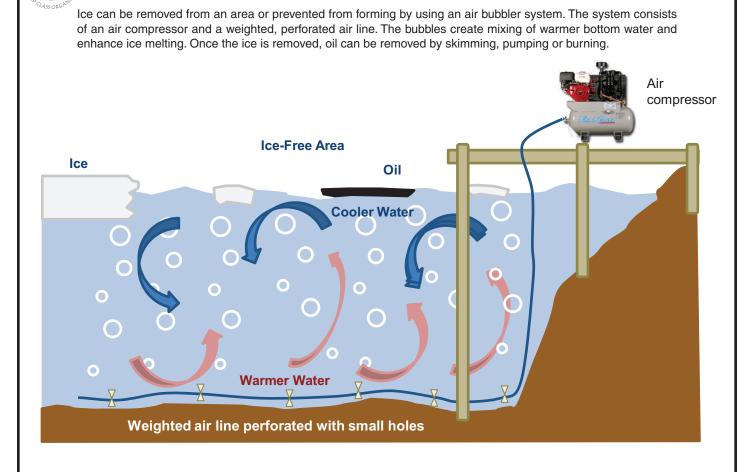
TYPICAL ARCTIC HOLDING CAPACITY

- Check ice thickness for safe bearing capacity before working on ice. The ice must be sufficiently strong to support personnel and heavy equipment. See Tactic L-7 for realistic maximum operating limits (RMOL) for ice thickness and temperature. Also, ensure ice can withstand extra load of oil and snow on the surface without either breaking the ice or forcing oil to migrate through existing cracks. Extreme care must be taken when positioning or operating any heavy equipment close to trenches or slots in the ice. Stresses in the ice for a given load can double under these situations. Ensure that oil that accumulates in an ice trench is continually removed. If allowed to build up to a thick layer, some oil may escape the ice slot.
- · Heat in the shelter will make the rope mop and pump more effective.
- When appropriate, the amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

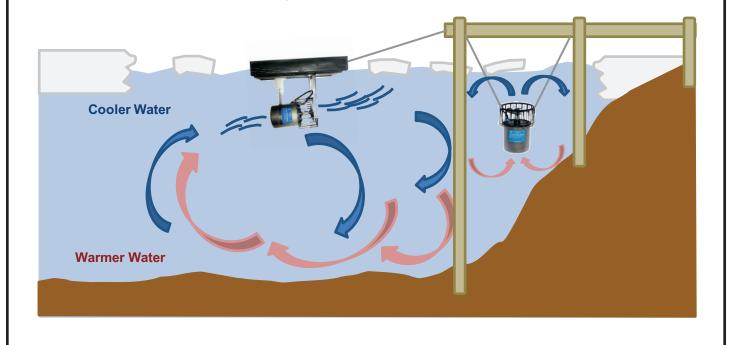
GCS

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL


	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Air Compressor	All	Create air curtain	1	4 for setup	1 hr	1 hr
	Weighted, perforated air line	Eni	Circulate warmer bottom water	50 ft	-	1 hr	1 hr
or	Velocity Jet De-Icers	ACS	Circulate warmer bottom water	2	2	1 hr	1 hr

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Generator	All	Electricity	2	2 for setup	1 hr	0.5 hr
Light Plant	All	Illumination	<u>≥</u> 1	2 for initial setup	1 hr	0.5 hr

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- Check ice thickness and condition for safe bearing capacity before working on ice. The ice must be strong enough to support personnel and equipment. See Tactic L-7 Realistic Maximum Operating Limitations (RMOL) for ice thickness and load bearing recommendations.
- Personnel should use extreme caution near the open edges or when walking on ice in the vicinity of the velocity jet. Ice thickness and strength will become compromised over time.
- Bubbler systems can also be used to direct or restrict the movement of surface contamination or debris.
- These tactics are not effective where bottom-fast ice has formed or in extreme cold water where bottom water temperature is the same as the ice. Additionally, de-icers may be ineffective in extremely shallow water.
- · Follow manufacturer's recommendations for the storage, maintenance and deployment of the velocity jets.
- Tactic R-19A Addresses Ice Management using vessels in open ocean to decrease broken ice concentrations in recovery areas.

Ice can also be removed using velocity jet de-icers. De-icers draw warmer, denser water from the bottom and circulate it upward toward the surface. De-icers can be suspended from a dock or attached to a float and secured in place to keep marinas and vessel mooring areas free of ice.

A V-shaped boom configuration is anchored with two booms of 1,000 feet each, with a typical sweep opening of 800 feet. Anchors are placed as appropriate. A skimmer will be tied in at the apex. A workboat supports the skimmer and tends the boom. The skimmer pumps oil and water into a mini-barge anchored immediately downcurrent.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

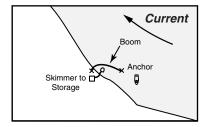
EQUIPMENT AND PERSONNEL

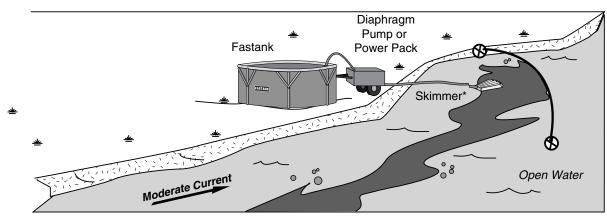
• Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

EQUIPMENT BASE LOCATION		FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Skimmer	All	On-water recovery	1		4 hr	
Work Boat	All	Support skimmer and tend boom	1		1 hr	
Boom	All	V boom	2,000 ft	4	1 hr	
Anchor System	All	Anchor boom	Variable		1 hr	
Anchor System	All	Anchor discharge hose	Variable		1 hr	. 3 hr
Anchor System	All	Anchor mini-barge	Variable		1 hr	
249-bbl Mini-barge (237 bbl available storage)	West Dock, Oliktok	Intermediate storage	2	_	1 hr	
Work Boat or Runabout All		Deploy boom	1	3 for setup	1 hr	
Work Boat	All	Tow mini-barge to unload	1	2	1 hr	

TOTAL STAFF FOR SETUP 9
TOTAL STAFF TO SUSTAIN OPERATIONS 6

SUPPORT


• An aircraft will track the oil and help coordinate the on-water task forces. A work boat with propeller tows the mini-barge into place and leaves once the barge is anchored.


CAPACITIES FOR PLANNING

• Boom throughput efficiency is 100% in open sea water and 90% in rivers.

- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape). Emulsion samples will be collected and analyzed for oil content.
- In shallow water operations, a mini-barge may be grounded and used as a work platform.

*A Manta Ray skimmer is shown, but other types of portable skimmers may be used.

Boom is anchored on the shore in lengths of 50 to 300 feet. An anchor holds the boom off the shore, and a work boat tends the booms and anchors.

A skimmer is placed near the shore in the recovery area of the boom. Diesel power packs on shore power the skimmer. A temporary tank and a trash pump are set up on shore (see Tactic R-22).

Liquids are pumped to the temporary tank on shore. Onshore tanks decant 80% of the fluids as free water into the collection boom area, with approval of the Federal or State On-Scene Coordinator, as appropriate.

Additional portable tanks and pumps can be added as needed depending on oil encounter rates.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

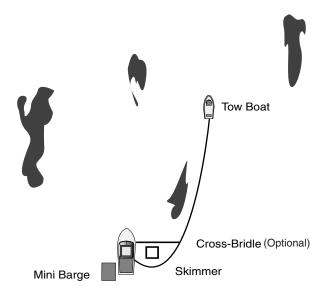
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

- Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).
- Equipment and personnel required to set up and maintain boom are listed in the applicable containment tactic.

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Small Stationary Skimmer System	All	Recovery	1		1 hr	
	Pump (3-inch)	All	Transfer	1	4 for setup	1 hr	3 hr
	Suction Hose (3-inch)	All	Recovery	2 <u>≥</u> 20 ft	2 to maintain	2 hr	
	Discharge Hose (3-inch)	All	Recovery	2 <u>≥</u> 50 ft		1 hr	
	Portable Tank	All	Storage	1		1 hr	
or	Tank Bladder (500 gal)	ACS, PBW, Alpine	Storage	1	_	1 hr	1hr

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Avgas Trailer	ACS, GPB, KRU, Badami, Alpine	Airboat fuel	1	1 (initial)	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr

CAPACITIES FOR PLANNING

• Up to 10 tactical units deployed within a 5-mile area can share the boom deployment/tending crew (e.g., one boom crew can deploy and tend up to 2,000 ft of boom within 5 miles), but a skimmer, power pack, storage and operators must be included for each hook boom deployed. For example, to set 10 hooks deployed within a 5-mile area, the following are needed: 2,000 ft boom, 1 boat with 3 personnel, 10 skimmers each with an operator, 10 power packs each with an operator, and 10 portable tanks with associated hoses.

- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which
 must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or
 any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented
 and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and
 biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic
 can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of
 plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- Rubber-tracked wide-track dozers or Rolligons can pull tanks across the tundra to waiting vacuum trucks on a pad or road. Backhoes or Bobcats can dig collection pits along the shore for storage.
- Airboats can be used to move oil into collection points.
- KRU has Rolligons with cranes to lift skimmers, if necessary.
- 500-gallon bladders with cargo nets placed underneath could also be used for helicopter slinging or storage.
- Bigger bladders could be used if Rolligon transport is available.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

A work boat tows 350 to 500 feet of boom, with swath widths of 100 to 150 feet, respectively. The other end of the boom is connected to the boat that operates the skimmer. The boom is towed in a J-boom configuration that directs oil into a skimmer in the apex. Continued operations offshore involve boom of 350 feet. Operations that enter nearshore areas and encounter lesser waves involve boom of 500 feet.

Skimmed liquids are pumped into mini-barges. A skimmer vessel tows and fills a mini-barge until it is replaced by an empty mini-barge. Free water from the bottom of the mini-barge tank is decanted during the skimming and loading. The discharge hose, fastened upcurrent of the skimmer, directs the free water into the boomed area. The operator turns off the pump when the discharge water becomes black with oil. Mini-barges are towed to, and deliver liquids to, an intermediate storage barge.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

· Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Skimmer	All On-water reco		1		1 hr	
Work Boat	All	Tow boom and mini- barge, operate skim- mer and pump	1	3	1 hr	
Work Boat	All	Tow J-boom	1	2	1 hr	2 hr
Boom	All	On-water collection	Variable	2	1 hr	
Work Boat	All	Shuttle mini-barge	1	2	1 hr	
249-bbl Mini-Barge (237-bbl available storage)	West Dock, Oliktok	Intermediate storage	2		1 hr	

TOTAL STAFF

DECANTING

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Trash Pump (3-inch)	All	Decanting	1	1	1 hr	
Suction Hose (3-inch)	All	Decanting	≥20 ft	2 for setup	2 hr	2 hr
Discharge Hose (3-inch)	All	Decanting	≥50 ft	2 for setup	2 hr	

SUPPORT

· An aircraft tracks the oil and helps coordinate the on-water task forces (preferably twin-engined aircraft or singleengined aircraft on floats).

CAPACITIES FOR PLANNING

- 1 hr to load mini-barge; 1.5 hr to unload.
- When used with a weir skimmer and after decanting, a mini-barge contains 79 bbl oil, 53 bbl water in emulsion, 104 bbl free water, 237 total bbl.

- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape). Emulsion samples will be collected and analyzed for oil content.

NOTE: This operation may also be conducted using a work boat with integrated oil recovery system and built-in recovered oil storage tank. This option is ideal for handling smaller spills, as well as supporiing larger responses.

Two work boats each tow 500 feet of ocean boom in a 300-foot-wide sweep. The skimming vessel is tied into the boom. The oil passes into the boom configuration and then into a skimmer. The vessel's hydraulics power the skimmer and the skimmer pump. The skimmer pumps recovered liquids into a towed storage platform. Free water is decanted during the loading step. When the storage platform is full, a work boat replaces it and tows it to an intermediate storage platform for off-loading. Skimming continues uninterrupted.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Work Boat	All	Tow boom, up to 500 ft	2	4	1 hr	2 hr
Boom	All	On-water recovery	1,000 ft	— 1 hr		2111
Work Boat	Work Boat All		1	4	1 hr	
Skimmer All		On-water recovery	2		1 hr	2 hr
Work Boat	All	Shuttle storage platforms	1	2	1 hr	
249-bbl Mini-Barge (237 bbl available storage)	West Dock, Oliktok	Intermediate storage	2	_	1 hr	

^{* 50} bbl onboard recovered oil tank and off-loading PDP

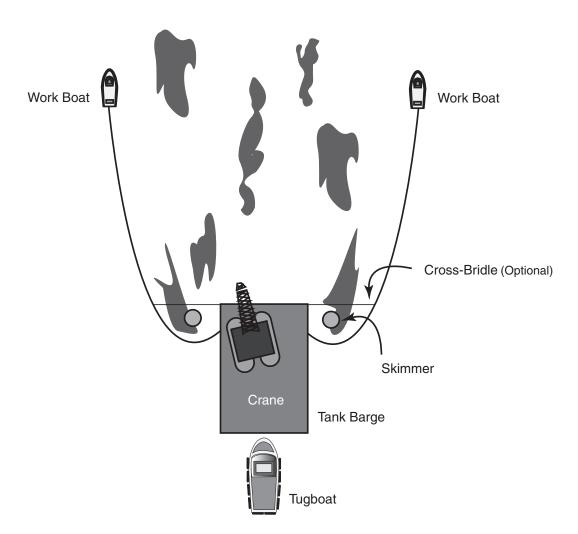
TOTAL STAFF

10

DECANTING

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES # STAFF PER SHIFT		MOBE TIME	DEPLOY TIME
Trash Pump (3-inch)	All	Decanting	1	1	1 hr	
Suction Hose (3-inch)	All	Decanting	≥20 ft	2 for setup	2 hr	2 hr
Discharge Hose (3-inch) All		Decanting	≥50 ft	2 for setup	2 hr	

SUPPORT


• A trained aerial observer in a fixed-wing aircraft or helicopter tracks the oil location and movement from above and coordinates the on-water task force recovery effort.

CAPACITIES FOR PLANNING

- When used with a weir skimmer and after decanting, a mini-barge contains 79 bbl oil, 53 bbl water in emulsion, 104 bbl free water, 237 total bbl.
- 1 hr to load mini-barge; 1.5 hr to unload.

- The oil recovery rate and number of mini-barges required (fill to 95% capacity) vary with the oil encounter rate.
- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape) prior to offloading. Emulsion samples will be collected and analyzed for oil content.

Two work boats each tow 1,000 feet of ocean boom into a J-shape to make a 700-foot sweep. The boom is inflated and deployed from the deck of the tank barge. A crane lifts a skimmer from one side of barge's deck into the apex of the boom. The crane positions the skimmers where the oil is deepest. The barge pumps up to 80% of its free water back into the boomed area. The task force advances at a speed no greater than 0.7 knot.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

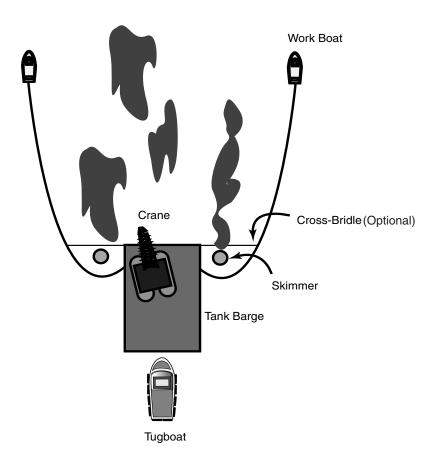
	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Work Boat (ACS Bay Class or equivalent**)	West Dock	Tow boom	2	6	1 hr	
	Boom	West Dock, Oliktok	On-water collection	Variable	4	1 hr	3 hr
or	Crucial 13/30 Skimmer	ACS	On-water recovery	2	_	1 hr	
or	LORI LFS Skimmer	ACS	On-water recovery	2	_	1 hr	
	Tug	West Dock	Towing	1	4	2 hr	3 hr
	Tank Barge	West Dock	Storage	1	6	4 hr***	3111
	Mobile Crane	GPB, KRU, Peak	Skimmer deployment	1	1	2 hr	
	Archimedes Screw Pump	ACS, KRU	Decanting	1	_	1 hr	3 hr
	Discharge Hose (4-inch w/ 6-inch to 4-inch reducer)	ACS, PBW, KRU	Decanting	≥50 ft	_	1 hr	

TOTAL STAFF 21

SUPPORT

· A trained aerial observer in a fixed-wing aircraft or helicopter tracks the oil location and movement from above and coordinates the on-water task force recovery effort.

- The oil recovery rate and number of mini-barges required (fill to 95% capacity) vary with the oil encounter rate.
- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape) prior to offloading. Emulsion samples will be collected and analyzed for oil content.


^{** 200} hp minimum

^{***} This mobilization time applies after tank barge arrives on North Slope.

TOTAL STAFF

25

Two work boats each tow 400 feet of ocean boom from the barge into a J-shape to make a 300-foot sweep. Length of boom depends on the ice conditions. A crane lifts a skimmer from one side of the storage barge's deck into the apex of the boom. The crane positions the skimmers where the oil is deepest, and the barge fills with recovered liquids.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Work Boat (ACS Bay Class or equivalent*)	West Dock	Tow boom	2	6	1 hr	
	Tug	West Dock	Tow barge	1	4	2 hr	
	Tank Barge	West Dock	Skimmer mount	1	14	4 hr***	
	Boom	West Dock	On-water collection	Variable	4 for setup	1 hr	
	Mobile Crane	GPB, KRU, Peak	Skimmer deployment	1	1	2 hr	3 hr
	Desmi 250 (Ocean)	ACS	On-water recovery	1	_	1 hr	"
	Desmi 250 (Harbor)	ACS	On-water recovery	1	_	1 hr	
	LORI LFS Skimmer	ACS	On-water recovery	2	_	1 hr	
and/or	Crucial 13/30 Skimmer	ACS	On-water recovery	2	_	1 hr	
and/or	Foxtail Rope Mop V.A.B 2-9	ACS	On-water recovery	1	_	2 hr	
and/or	Foxtail Rope Mop V.A.B. 4-9	ACS	On-water recovery	1	_	2 hr	

^{* 200} hp minimum

SUPPORT

• A trained aerial observer in a fixed-wing aircraft or helicopter tracks the oil location and movement from above and coordinates the on-water task force recovery effort.

- Ice management may be used to decrease ice concentrations encountered by the containment system.
- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape). Emulsion samples will be collected and analyzed for oil content.

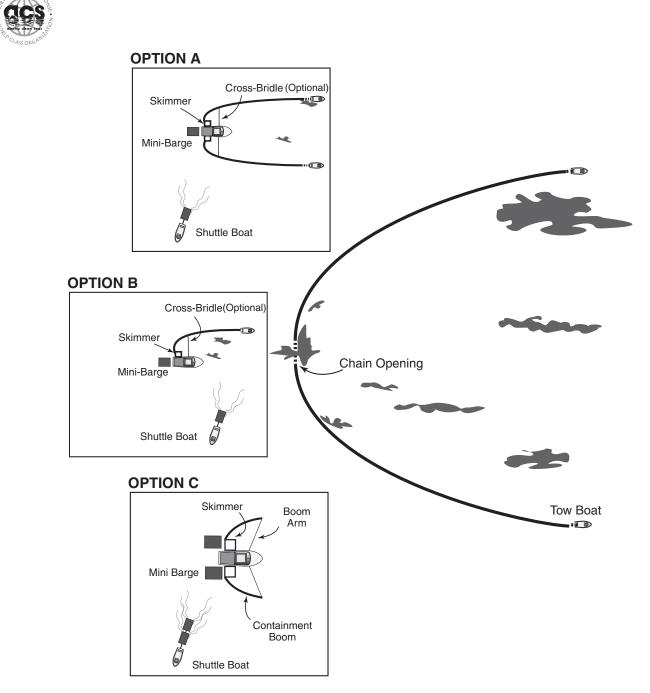
^{***} This mobilization time applies after barge arrives on North Slope.

operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

• Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Work Boat	West Dock, Oliktok, Northstar	Tow boom for open apex	2	6	1 hr	
	Work Boat	All	Tow boom, up to 250 ft	Opt. A: 2 Opt. B: 1 Opt. C: 0	Opt. A: 6 Opt. B: 3 Opt. C: 0	1 hr	
	Boom	All	On-water recovery	Variable	_	1 hr	
	LORI LSC Skimmer	West Dock	On-water recovery	Opt. A: 2 Opt. B: 1 Opt. C: 2	1	1 hr	Opt. A: 4 hr
or	Crucial 13/30 Skimmer	West Dock	On-water recovery	Opt. A: 2 Opt. B: 1 Opt. C: 2	I	1 hr	Opt. B: 4 hr Opt. C: 4.5 hr
	Work Boat	West Dock	Run skimmer and pump; tow mini-barge while loading	1	4	Opt. A: 1 hr Opt. B: 1hr Opt. C: 1.5 hr	
	249-bbl Mini-Barge (237-bbl available storage)	West Dock, Oliktok	Intermediate storage	Opt. A: 2 Opt. B: 2 Opt. C: 4	_	2 hr	

TOTAL STAFF OPT. A: 16

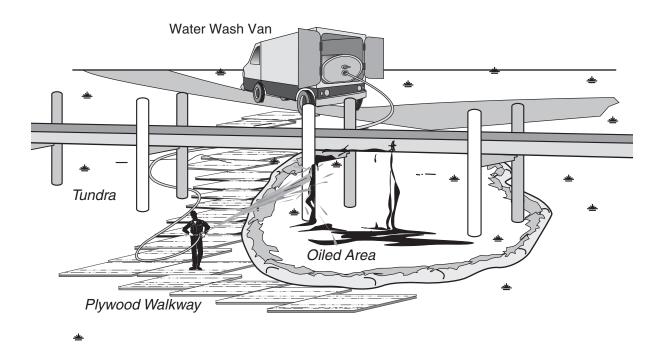

OPT. B: 13 OPT. C: 10

SUPPORT

• A trained aerial observer in a fixed-wing aircraft or helicopter tracks the oil location and movement from above and coordinates the on-water task force recovery effort.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- The oil recovery rate and number of mini-barges required (fill to 95% capacity) vary with the oil encounter rate.
- · Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape) prior to offloading. Emulsion samples will be collected and analyzed for oil content.



The length of boom and boom swath width are determined by the towing capacity of the boats and the water depth. For a swath width of 650 feet, two work boats each pull 1,000 feet of ocean boom. (Shorter lengths of boom may be necessary to avoid boom planing or entrainment based on sea conditions).

Oil funnels through the boom's chained opening in the apex, with concentrated oil moving directly into a collection boom consisting of one or two 250-foot sections, each towed by a work boat (Options A and B). A recovery vessel (work boat) with skimming capability is tied into the apex of the collection boom. The recovery vessel's engines power a hydraulic system to drive the skimmer and the pumps. For Option C, the 250-foot sections of boom and towboats are replaced by two 42-foot sections of boom held in place off the recovery vessel by means of boom arms.

Oil and sea water are pumped into a mini-barge or floating storage bladder. To replace when full, a shuttle boat hooks up an empty replacement to the skimmer vessel and tows away the full one.

Hot-water, high-pressure washing removes oil from concrete, rock, and metal surfaces. Sorbents, containment boom, and Shore Seal boom prevent re-oiling of adjacent areas. Sorbent boom and skimmers recover oil from adjacent water, while trenches collect surface and subsurface oil.

The water wash van's high-pressure, high-temperature spray is directed over the oiled surface to remove the oil. The van has a tank, with heater, hose, and nozzle. Water pressure is approximately 3,000 psi. The removed oil is trapped downstream in a man-made lined pit or trench or in a boomed-off area of open water close to shore. The oil is then removed by direct suction, skimming, burning, or sorbent pads. The water wash van has a 200-gallon water tank with a diesel heater. The van can be coupled with a water truck to give it a continuous supply of water. Without a water truck, the van can operate for 4 to 6 hours.

The water wash van is loaded onto a deck barge to access offshore oiled structures.

Hot-Water, High-Pressure Washing of Solid Surfaces (Page 2 of 2) TACTIC R-21

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL FOR OPEN WATER

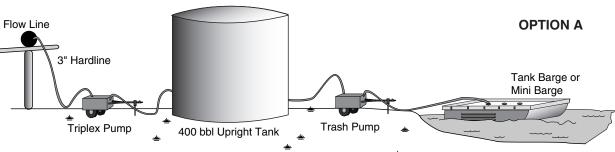
	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Water Wash Van	PBE, KRU	Surface oil removal	1	2 (3 if water truck used)	1 hr	1 hr
ĺ	Tug*	West Dock	Tow barge	1	0	2 hr	
	Deck Barge*	West Dock	Work platform, and equipment transport	1	8	4 hr	4 hr

*Optional TOTAL STAFF

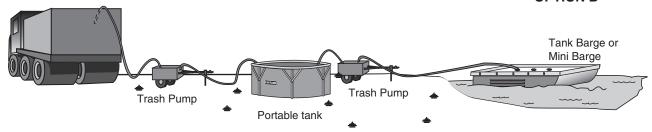
EQUIPMENT AND PERSONNEL FOR ONSHORE

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Water Wash Van	PBE, KRU	Surface oil removal	1	2 (3 if water truck is used)	1 hr	1 hr
Plywood	All	Walk path	Varies	2	2 hr	2 hr

SUPPORT


• Vacuum trucks, skimmers, and sorbents are used for collection. Pumps transfer the oil to mini-barges or bladders towed by work boats. Containment booming is used when recovering near or over water and the oil is washed into the boomed area (see Tactic C-4 for containment options). A water truck is attached to the water wash van for an additional water supply, when necessary.

CAPACITIES FOR PLANNING


• The water tank on the water wash van has a capacity of 200 gal.

- Oiled surfaces are cleaned up as a non-emergency project. Cleaning begins at the highest point and continues downslope. Care is taken to avoid contaminating unaffected areas. Removed oil is concentrated for recovery. The Spillbuster van has vacuum capabilities.
- The water wash units come skid-mounted (KRU) and as a mobile van (PBE). They are kept in warm storage and are not used when the temperature is below freezing. During winter, ConocoPhillips' steam unit from Drill Site Maintenance is used. This unit virtually eliminates free liquids from cleaning.
- The hot-water, high-pressure wash method is harmful to flora and fauna and is not recommended for surfaces that support living plants or animals. When this method is used on oiled surfaces other than boulders, man-made structures, or rock, the oil may penetrate deeper into the sediments.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which
 must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or
 any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented
 and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and
 biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic
 can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of
 plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

OPTION B

In Option A, a pump at the dockhead moves liquids from a storage barge into a temporary upright tank using a trash pump, and a Triplex pump moves the liquid from the tank through a 3-inch hard line and flange connector into a production pipeline. In Option B, a temporary open-top tank such as a Fastank may also be used and trash pump moves the liquid from the open-top tank to a tank truck or tank trailer when a pipeline is not available.

EQUIPMENT AND PERSONNEL

OPTION A

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Upright Tank (400-bbl)	KRU, Alpine	Store recovered fluids	1	1 intial	2 hr	2 hr
	Trash Pump (4-inch)	ACS, GPB, Alpine	Liquid transfer	1	1	1 hr	
or	Archimedes screw pump	West Dock	Liquid transfer	1	_	1 hr	3 hr
	Triplex (6-inch)	GPB, KRU; Alpine has 2-inch	Liquid transfer	1	2	1 hr	
	Suction Hose (6-inch)	ACS	Liquid transfer	≥20 ft	2 for setup	2 hr	
	Discharge Hose (6-inch)	ACS, PBW, KRU	Liquid transfer	≥50 ft	_	1 hr	0 b*
	Suction Hose (4-inch)	ACS, PBW	Liquid transfer	<u>></u> 20 ft	2 for setup	2 hr	2 hr
	Discharge Hose (4-inch)	ACS, PBW, KRU	Liquid transfer	≥50 ft	_	1 hr	
	Hard Line and Flange Connector (3-in)	Deadhorse	Liquid transfer	1 section	7 for setup	3 hr	

TOTAL STAFF FOR SETUP 13
TOTAL STAFF TO SUSTAIN OPERATIONS 6

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

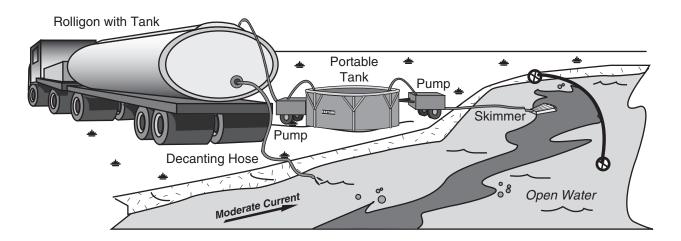
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL (CONT'D)

OPTION B

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Rolligon	Peak	Transport tank	1	1	6 hr	2 hr
Diesel Power Pack	ACS, GPB, KRU, Endicott	Power recovery equipment	1	1	1 hr	1 hr
Portable Tank	All	Intermediate storage	1	2 for setup	1 hr	
Vacuum Truck	All	Transfer liquid	1	1	1 hr	0.5 hr
Trailer Tank (10,000 gal)	Peak	Transfer liquid	1	_	6 hr	
Archimedes Screw Pump	West Dock	Transfer liquid	1	_	1 hr	3 hr
r Trash Pump (4-inch)	ACS, GPB, Alpine	Transfer liquid	2	2	1 hr	
Suction Hose (4-inch)	ACS, PBW, Alpine	Transfer liquid	≥20 ft	2 for setup	2 hr	1 hr
Discharge Hose (4-inch)	ACS, PBW, KRU, Alpine	Transfer liquid	≥50 ft	_	1 hr	

TOTAL STAFF


7

CAPACITIES FOR PLANNING

• The typical suction rate for liquids by a vacuum truck is 200 bbl/hr in the summer and 150 bbl/hr in the winter. The typical suction rate for pooled diesel remains at 200 bbl/hr year round. (Vacuum truck recovery rate is reduced to 34 bbl/hr if a Manta Ray skimmer is used.)

- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- When working with equipment around or near flow lines, a spotter must be added to each front-end loader.
- A civil work permit from the operator is required for all work on owner-company pads.
- Decanting takes place from the temporary storage tanks with approval from the Federal or State On-Scene Coordinator, as appropriate, to minimize the risk of secondary spills and to reduce the number of trips across the tundra, if necessary.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

A Rolligon pulls the empty 10,000-gallon trailer tank to a storage site. Liquids are pumped from a temporary tank into the trailer tank using a 4-inch trash pump. The Rolligon then pulls the trailer cross-country and transfers the liquid to a waiting vacuum truck or temporary storage tank on a pad or road. The Rolligon works under ACS's permit for emergency tundra travel.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

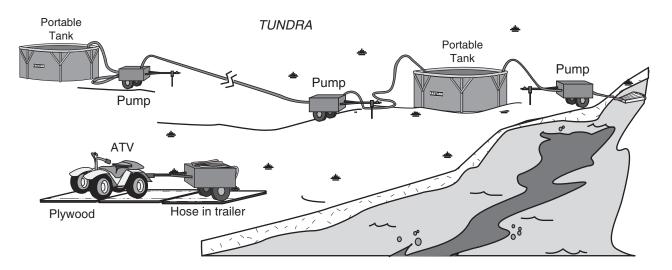
EQUIPMENT AND PERSONNEL

• Equipment and personnel required to set up and maintain boom are listed in the applicable containment tactic.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Rolligon	Peak	Transport tank	1	1	6 hr	
Trash Pump (4-inch)	ACS, GPB, Alpine	Liquid transfer	1	1	1 hr	
Suction Hose (4-inch)	ACS, PBW, Alpine	Liquid transfer	≥20 ft	2 for setup	2 hr	
Discharge Hose (4-inch)	ACS, PBW, KRU, Alpine	Liquid transfer	≥50 ft	_	1 hr	
Diaphragm Pump (3-inch)	All	Recovery	1	1	1 hr	2 hr
Suction Hose (3-inch)	All	Recovery	2 <u>≥</u> 20 ft	2 for setup	2 hr	
Discharge Hose (3-inch)	All	Recovery	2 <u>≥</u> 50 ft	_	1 hr	
Trailer Tank (10,000 gal.)	Peak	Intermediate storage	1	_	6 hr	

TOTAL STAFF

SUPPORT


• Temporary storage tanks at a recovery site are the liquid source for the trailer tank. Vacuum trucks wait on gravel pads or nearby roads to empty the trailer tank.

CAPACITIES FOR PLANNING

- Trailer tank holds 10,000 gal.
- Travel speed is approximately 5 mph across tundra; Rolligon travels up to 20 mph on roads.

- Other trailer tanks are available on the Slope. The trailer tank and the temporary storage tanks decant free water to a recovery site. Travel across tundra by tracked vehicles and decanting require approval by the Federal or State On-Scene Coordinator, as appropriate.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

A system of hoses and pumps in series system is assembled to transfer stored liquids. Four- or 6-inch discharge hose is used in sections, with 4-inch or 6-inch trash pumps in series approximately 1,000 feet apart. Liquids are pumped to a storage tank or vacuum trucks, or are recycled into a pipeline. Hose and pumps in series are typically used across tundra, but if the hose crosses a road or pad, crossings are flagged and constructed with timbers over the hose. The hose is clearly marked.

To transport pumps and hose across the tundra, plywood sheets are laid out in the path. The trash pumps are towed behind an Argo all-terrain vehicle (ATV) or 4-wheeler across the plywood. A 4-inch trash pump weighs 825 pounds, and has an axle and wheels under its skid mount. An ATV towing a trailer carries the hose.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

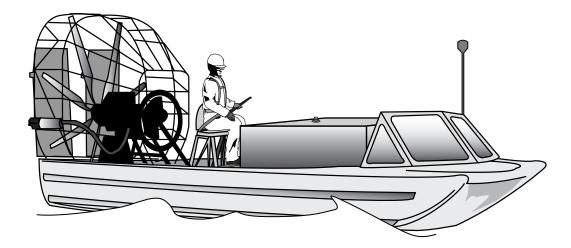
EQUIPMENT AND PERSONNEL

• The length of discharge hose required is approximated by the distance of the fluid transfer.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
ATV	All except Badami	Transport equipment	2	2	1 hr	
Trash Pump (3- or 4-inch)	ACS, GPB, Alpine	Liquid transfer	<u>></u> 2	4	1 hr	4 hr
Suction Hose (3- or 4-inch)	ACS, PBW, Alpine	Liquid transfer	≥20 ft	_	2 hr	
Discharge Hose (3- or 4-inch)	ACS, PBW, KRU, Alpine	Liquid transfer	≥500 ft	6	1 hr	

TOTAL STAFF FOR SETUP 12
TOTAL STAFF TO SUSTAIN OPERATIONS 6

SUPPORT


• A pipeline, tank, vacuum truck, or other suitable storage receives the transported liquids from the hose and pump in series. Plywood sheets are laid across the tundra to ease travel and minimize impact to the tundra.

CAPACITIES FOR PLANNING

• One tactical crew unit can deploy approximately 1,500 ft of hose per hour if the hose is prestacked on a trailer.

- The ACS discharge hose test performed on September 27, 1997, with a Gorman Rupp pump, 4-inch suction hose, and 2,000 ft of 6-inch discharge hose demonstrated a capacity of 690 bbl/hr. The test was performed with water, and the pump had no problem pumping large volumes of water through 2,000 ft of hose.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

A 300-gallon DOT tank is mounted on a freighter airboat. Liquid is pumped from a recovery site pit, trench, or tank with a 2-inch trash pump onboard. The boat hauls the liquids to a disposal, transfer or storage site.

The airboat's tank is unloaded with a vacuum truck or at a tank farm.

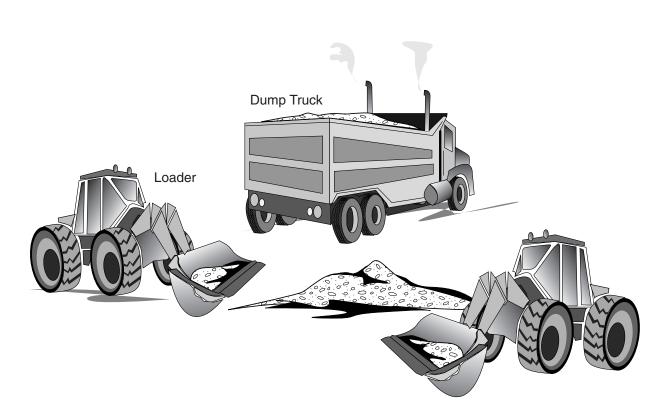
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Freighter Airboat	ACS, KRU, Alpine	Transport tank	1	4	1 hr	
Trash Pump (2-inch)	MPU, ACS, KRU, Alpine	Fluid transfer	1	_	1 hr	
Discharge Hose (2-inch)	All	Fluid transfer	≥50 ft	_	1 hr	1 hr
Suction Hose (2-inch)	All	Fluid transfer	≥20 ft	_	2 hr	
Tank (300-gallon)	KRU, Alpine	Fluid storage	1	_	1 hr	

TOTAL STAFF

SUPPORT


- The freighter airboat is offloaded to a tank farm or vacuum truck at a boat launch on the road system, or at a marine dock.
- · A Manta Ray skimmer head onboard the airboat will serve as an option to recover from pits or trenches.

CAPACITIES FOR PLANNING

- The typical suction rate for liquids by a vacuum truck is 200 bbl/hr in the summer and 150 bbl/hr in the winter. The typical suction rate for pooled diesel remains at 200 bbl/hr year round. (Vacuum truck recovery rate is reduced to 34 bbl/hr if a Manta Ray skimmer is used.)
- Maximum load of freighter airboat = 4,000 lb.

- Approval from the Federal or State On-Scene Coordinator, as appropriate, is required for decanting available free water in inshore storage tanks.
- · Have sorbent boom available at the transfer/disposal site as a contingency during tank offloading.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.

Oiled gravel not considered a regulated waste is excavated with a front-end loader into dump trucks, which then drive to a temporary storage site or a disposal site. Contaminated gravel is stockpiled in temporary lined and diked containment areas.

A bulldozer or grader loosens the gravel for the front-end loader when necessary. A Bobcat replaces the front-end loader in hard-to-reach or tight quarters. Manpower with shovels may also be required under lines or facilities with less than 6-foot clearance.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Front-End Loader	All	Recover oiled gravel	1	1	1 hr	0.5 hr
or	Bobcat	KRU, PBE, ACS, Alpine	Recover oiled gravel	1	1	1 hr	0.5 hr
	Grader, Backhoe or Dozer	All GPB, KRU, Peak, AIC, Alpine	Loosen gravel	1	1	1 hr	0.5 hr
	Dump Truck	GPB, KRU, Alpine	Transfer oiled gravel	2 to 9	2 to 9	1 hr	0.5 hr

TOTAL STAFF

3 (4 if grader, backhoe, or dozer used)

SUPPORT

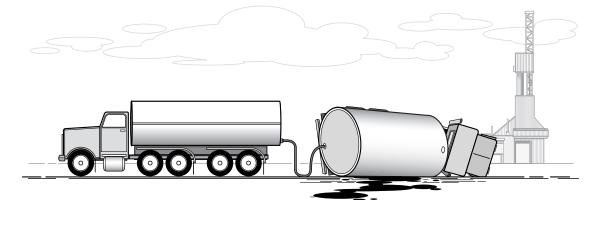
EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer GPB, KRU, Alpine Transpo		Transport backhoe	1	1 driver	1 hr	0
Fuel Truck All		Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Truck All except Badami		Support heavy equipment	1	1	1 hr	0.5 hr
Lube Truck All except Badami		Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr

CAPACITIES FOR PLANNING

- A front-end loader with a 3-cubic-yd bucket recovers 100 cubic yd of gravel per hour, and can fill a dump truck in 30 minutes. The average dump truck available on the Slope has a 20-cubic-yd capacity.
- A front-end loader with a 4-cubic-yd bucket recovers 150 cubic yd of gravel per hour, and can fill a dump truck in 15 minutes.
- Following is an example of dump-truck delivery rate of gravel for one 20-cubic-yd dump truck traveling 4 miles round trip (equipment and crews operate 10 hr in 12-hr shift; 2 shifts per day):

$$Dump Recovery = \frac{T_c}{L_t + T_t + U_t} = \frac{20 \text{ cubic yd}}{0.25 \text{ hr} + \left(\frac{2 \text{ mi} * 2}{35 \text{ mph}}\right) + 0.08 \text{ hr}} = 45 \text{ cubic yd/hr}$$
or 5.6 bbl/hr

Example:
$$T_{C}$$
 = Truck Capacity
$$L_{t} = Load \ Time \ (15 \ min \ or \ 0.25 \ hr) \qquad T_{t} = Travel \ Time \left(\frac{miles \ to \ disposal * 2 \ trips}{35 \ mph}\right)$$


$$U_{t} = Unload \ Time \ (5 \ min \ or \ 0.08 \ hr)$$


• 1 yd³ of gravel contains approximately 1/8 (0.125) bbl of oil.

- This tactic is limited to oiled gravel with no free liquids. Depth of penetration of the spill into the gravel depends on the type of release and the released fluid. Diesel penetrates the gravel pad to a greater depth than crude oil.
- Storage sites must be located where they present minimal environmental impact.
- Set up a decontamination unit before oil handling work is performed.
- · A temporary storage permit will be required from ADEC.
- On pads, check for buried pipe and/or cables prior to excavation. Obtain a civil work permit from the operator.

TACTIC R-27 Damaged Tank Transfer Procedures (Page 1 of 2)

Typically, transfer from a tank would be required if a stationary storage tank either was damaged or developed a serious integrity problem, or if a vacuum truck rolled over on the road and was damaged. Tank holes can be patched by different methods including plug and dike, wooden stakes, and patch kits.

Damaged tank transfers will generally involve flammable liquids, which require special considerations. Non-sparking pumps must be used for such transfers. Vacuum trucks are specially designed for most of these products and are readily available on the Slope. Product can also be transferred to a stationary tank in the vicinity of the damaged tank.

Damaged Tank Transfer Procedures (Page 2 of 2) TACTIC R-27

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Support personnel required include 2 responders per shift and one Safety Officer per shift.

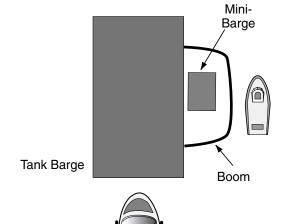
	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Vacuum Truck (300-bbl)*	All	Transfer	1	1	1 hr	0.5 hr
or	Supersucker	All	Transfer	1	1	1 hr	0.5 hr
or	Fuel Truck	All	Transfer	1	1	1 hr	0.5 hr
or	Diaphragm Pump (3-inch)	All	Transfer	1	2	1 hr	
	Suction Hose (3-inch)	All	Transfer	≥20 ft	_	2 hr	1 hr
	Discharge Hose (3-inch)	All	Transfer	≥50 ft	_	2 hr	

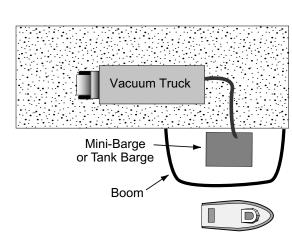
TOTAL STAFF 3

NOTE: Deploy times vary greatly based on the safety risk of the product involved.

RECOVERY CAPACITIES FOR PLANNING

• The typical suction rate for liquids by a vacuum truck is 200 bbl/hr in the summer and 150 bbl/hr in the winter. The typical suction rate for pooled diesel remains at 200 bbl/hr year round.


- Inert gases may be required for displacing flammable or explosive air mixtures.
- A Safety Officer should be on site conducting continuous air monitoring.
- Plug-and-patch kits are available from owner company HAZMAT teams.
- · Non-sparking tools may be required for working on equipment.
- The amount of oil will be estimated based on gauging by appropriate means (e.g., Coliwasa tube). Emulsion samples will be collected and analyzed for oil content.


^{*} Badami vacuum truck capacity = 90 bbl

LIGHTERING AT SEA

OFFLOADING AT SHORE

Work boats tow recovered oil-laden mini-barges or floating storage bladders to a waiting OSR platform (tank barge or tanker vessel). Towing speed is 5 knots. The mini-barge or floating storage bladder is tied off using appropriate fendering. Before offloading mini-barges, a bonding cable is connected for protection against accidental ignition. A tankerman assists with the entire off-loading operation, and a Declaration of Inspection form will be completed prior to commencing transfer.

To offload, a 3- to 4-inch trash or Archimedes screw pump is used depending on the oil viscosity. Personnel monitor tie-up lines during offloading to minimize surge. When pumping is complete, hatches are put back in place, hoses and pumps are retrieved and secured, and bonding cable removed (where necessary). At that time, the mini-barge or floating storage bladder is ready to return to service.

NOTE: Similar operations are utilized to off-load OSRBs to a tanker vessel.

Barges may also be offloaded directly to a vacuum truck onshore.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

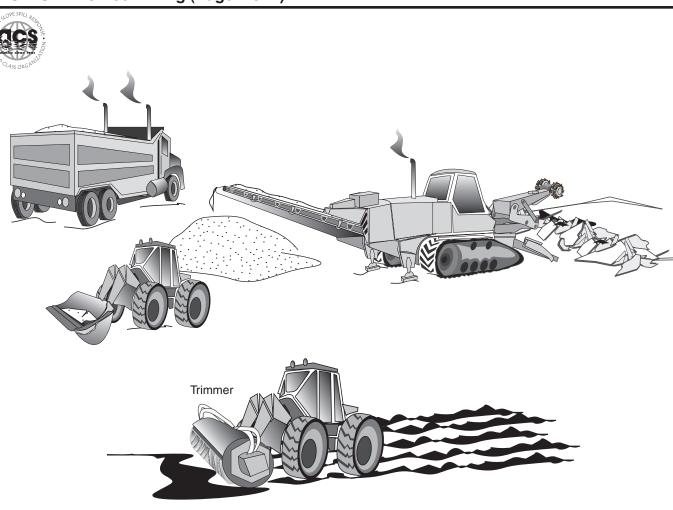
EQUIPMENT AND PERSONNEL

• Vessels are to be selected according to area, water depth restrictions, and function (see Tactic L-6).

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Tug	West Dock	Tow barge	1	4	2 hr	
	Tank Barge	West Dock	Fluid storage	1	3	4 hr**	
	Boom	All	Surround off-loading vessel	Variable	2	1 hr	
	Work Boat*	All	Tow mini-barge or floating storage bladder	1	П	1 hr	2 hr
	Suction Hose (4-inch)	ACS, PBW	Lightering	≥20 ft		2 hr	
	Discharge Hose (4-inch w/ 6-inch to 4-inch reducer)	All	Lightering	≥50 ft	_	1 hr	
	Trash Pump (3- to 4-inch)	ACS, GPB, Alpine	Lightering	2	2	1 hr	
or	Archimedes Screw Pump	ACS, KRU	Lightering	1	2	1 hr	
or	Vacuum Truck (300-bbl)	All	Offloading	1	1	1 hr	

^{*}Work boat staff are counted in recovery.

TOTAL STAFF


10-11

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Fuel Truck	All	Provide diesel fuel for boats and pumps	1	Once per shift	1 hr	0.5 hr

- The mini-barges have davits, but the Archimedes screw pump can be deployed by hand.
- If recovered oil is weathered to the point the 4-inch trash pump will not work, the Archimedes screw pump will be used.
- Hazards include open hatches, coiled lines, and hoses. Beware of pinch points between barges and boats. Hearing protection and possibly respirators will be required.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- The amount of oil recovered is estimated based on gauging by appropriate means (e.g., ullage tape). Emulsion samples are collected and analyzed for oil content.

^{**}This mobilization time applies after barge arrives on North Slope

During the winter, ice rubble piles can form at shorelines and manmade structures in the Beaufort Sea. Oil entrained in these piles can be accessed by removing the oiled ice with an ice-miner that grinds up the ice and deposits it in a pile that can be picked up with a front end loader and hauled away by dump truck.

This tactic can be used in winter and into breakup as long as the ice is thick enough to support the weight of vehicles and heavy equipment.

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Ice Miner	GPB, KRU	Grinding oiled ice rubble	1 (3 are available on the Slope)	1	1 hr	0.5 hr
Roto Trimmer	KRU, GPB	Grinding oiled ice rubble	1 (3 are available on the Slope)	1	1 hr	0.5 hr
Front-End Loader	All	Transfer oiled snow into dump trucks	1	1	1 hr	0.5 hr
Dump Truck	GPB, KRU, Peak, AIC, Alpine	Transfer oiled snow to disposal site	<u>></u> 2	<u>></u> 2	1 hr	0.5 hr

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

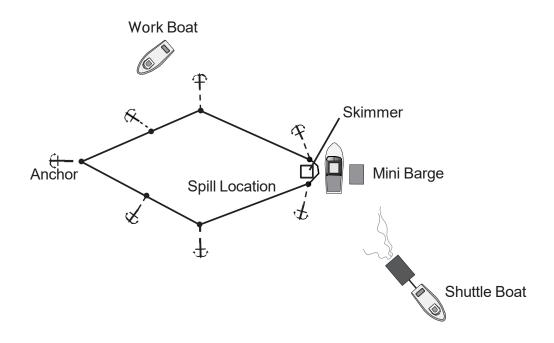
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport ice miner	1	1 driver	1 hr	0
Heater	All	Heat	<u>≥</u> 1	1 initial setup	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support heavy equipment	1	1	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr

CAPACITIES FOR PLANNING

- Capacity of ice miner: 1,400 cubic yd per hour for sea ice, 1,420 cubic yd per hour for freshwater ice.
- A front-end loader with an 8-cubic-yd snow bucket can fill a dump truck in 10 minutes and move 500 cubic yd per hour. The dump trucks available on the Slope typically have 10-, 20-, or 25-cubic-yd capacity. To keep pace with the ice miner, it may be necessary to load more than one truck at a time.
- Following is an example of recovery of oiled ice for one 20-cubic-yd dump unit:


$$Dump \ Truck \ Recovery = \frac{T_C}{L_t + T_t + U_t} = \frac{20 \ cubic \ yd}{0.17 \ hr + \left(\frac{2 \ mi * 2}{35 \ mph}\right) + 0.08 \ hr} = 55 \ cubic \ yd/hr$$

$$\begin{array}{ll} \textit{Example:} & T_{\textit{C}} = \textit{Truck Capacity} \\ & L_{t} = \textit{Load Time (10 min or 0.17 hr)} \\ & U_{t} = \textit{Unload Time (5 min or 0.08 hr)} \end{array} \qquad T_{t} = \textit{Travel Time } \left(\frac{\textit{miles to disposal * 2}}{\textit{35 mph}} \right)$$

- This tactic is limited to oiled ice with no free liquids.
- If the dump trucks cannot access the oiled area, build an ice road to keep the loaders from traveling too far.
- After removal of free oil, oiled snow, and after flushing, contain and monitor the area until breakup. Insulate ice
 roads or ice berms to provide containment during breakup, when the oil can be removed with direct suction,
 portable skimmers, or burning.

TACTIC R-30 Recovery Using Diamond Boom for Subsea Pipeline Break (Page 1 of 2)

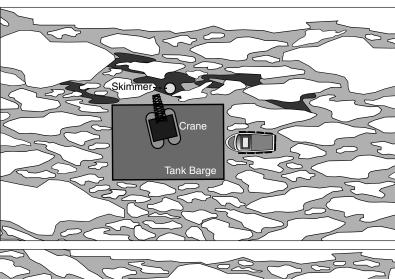
During a subsea pipeline break a diamond-patterned boom can be deployed around the break. A skimmer can be used at any point of the diamond to ensure collection regardless of the wind direction.

Picture shows an actual R-30 deployment in the summer of 2020. Note that the boom is not required to form a perfect diamond shape. Tide, current and winds will affect the boom shape. Anchors may need to be added or moved to ensure the boom is effective in corralling and containing the oil during changing conditions.

Recovery Using Diamond Boom for Subsea Pipeline Break (Page 2 of 2) TACTIC R-30

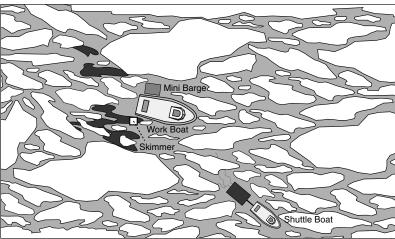
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Work Boat	West Dock	Run skimmer and pump; tow mini-barge while loading	1	4	1 hr	
Work Boat	West Dock	Boom deployment and tending	1	3	1 hr	
Work Boat	West Dock	Tow mini-barge to unload	1	3		4 hr
Skimmer	ACS	On-water recovery	1	_	0.5 hr	
Boom	All	On-water recovery	Variable	_	1 hr	
Anchor System	All	Anchor boom	8		1 hr	
249-bbl Mini-Barge (237-bbl available storage)	West Dock, Oliktok	Intermediate storage	2	_	1 hr	2 hr

TOTAL STAFF

10


- On the North Slope, this tactic is limited to shallow, slow-moving water.
- The skimming system would be located on the downwind side of the diamond.
- This tactic may also be used in broken ice conditions to deflect ice away from the spill location.
- Boom apex may be opened to direct oil to vessel-based containment.
- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape). Emulsion samples will be collected and analyzed for oil content.
- Responders will deploy and adjust the boom and anchor placement to ensure that containment is maintained if the wind and currents change direction.

OPTION A

OPTION B

A tug-pushed tank barge or workboat utilizing various skimmers navigates the spill area collecting oil in pockets of broken sea ice. Onboard cranes place the skimmers into the deepest pools of oil. During collection/recovery, vessels maintain no forward speed and are not using boom.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

OPTION A

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Tank Barge	West Dock	Skimmer and pump platform; storage	1	14	4 hr*	
	Tug	West Dock	Tow tank barge	1	4	2 hr	
	Skimmer (various)	ACS	On-water recovery	1	_	1 hr	3 hr
	Mobile Crane	GPB, KRU, Peak	Skimmer deployment	1	1	1 hr	3111
	Discharge Hose (4-inch w/ 6-inch to 4-inch reducer)	ACS, PBW, KRU	Decanting	≥50 ft	_	1 hr	
and	Archimedes Screw Pump	ACS, KRU, North Star	Decanting	1	_	1 hr	

*This mobilization time applies after barge arrives on North Slope.

TOTAL STAFF

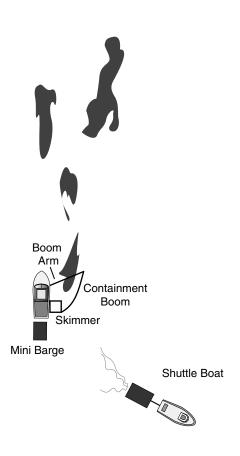
19

OPTION B

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Work Boat	West Dock	Tow storage platform, skimmer and pump platform	1	4	1 hr	
Skimmer (various)	West Dock	On-water recovery	1	_	1 hr	
Trash Pump (3-inch)	All	Decanting	1		1 hr	
Suction Hose (3-inch)	All	Decanting	≥20 ft		2 hr	4 hr
Discharge Hose (3-inch)	All	Decanting	≥50 ft		2 hr	
Work Boat	West Dock	Shuttle storage platforms	1	3	1 hr	
249-bbl Mini-Barge (237-bbl available storage)	West Dock, KRU	Intermediate storage	2	_	1 hr	

^{* 50} bbl onboard recovered oil tank and off-loading PDP ** Onboard 3-inch diaphram diesel decanting pump

TOTAL STAFF


7

SUPPORT

• A trained aerial observer in a fixed-wing aircraft or helicopter tracks the oil location and movement from above and coordinates the on-water task force recovery effort.

- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape). Emulsion samples will be collected and analyzed for oil content.

A skimmer vessel (tug-pushed tank barge or workboat) deployes a skimmer off one side in a boom-arm configuration. The skimmer vessel can advance at a maximum speed of 3 knots, giving an increased encounter rate and maneuverability in recovery operations.

Skimmed liquids are pumped into towed mini-barges or floating storage bladders. Free water from the bottom of the mini-barge tank is decanted during the skimming and loading. The discharge hose, fastened upcurrent of the skimmer, directs the free water into the boomed area. The operator turns off the pump when the discharge water becomes black with oil. Mini-barges and floating storage bladders laden with recovered oil are towed to an intermediate storage platform for off-loading.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Work Boat	West Dock	Deploy boom, tow mini-barge, operate skimmer and pump	1		1 hr	1 hr
Skimmer	West Dock	On-water recovery	1	3	1 hr	
Boom	All	On-water collection	21 ft		1 hr	2 hr
Work Boat	West Dock	Shuttle storage platforms	1	2	1 hr	
249-bbl Mini-Barge (237-bbl available storage)	West Dock, Oliktok	Intermediate storage	2	_	1 hr	

^{*} Onboard 3-inch diaphram diesel decanting pump

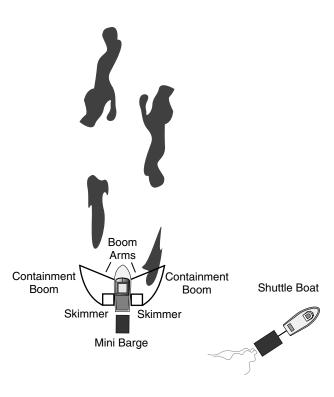
TOTAL STAFF

5

DECANTING

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Trash Pump (3-inch)	All	Decanting	1	1	1 hr	
Suction Hose (3-inch)	All	Decanting	≥20 ft	2 for setup	2 hr	2 hr
Discharge Hose (3-inch)	All	Decanting	≥50 ft	2 for setup	2 hr	

SUPPORT


• A trained aerial observer in a fixed-wing aircraft or helicopter tracks the oil location and movement from above and coordinates the on-water task force recovery effort.

CAPACITIES FOR PLANNING

• 1 hr to load mini-barge; 1.5 hr to unload.

- The oil recovery rate and number of mini-barges required (fill to 95% capacity) vary with the oil encounter rate.
- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape) prior to offloading. Emulsion samples will be collected and analyzed for oil content.

Deployable arms off both sides of the skimming vessel are configured with containment boom and skimmer. The skimmer vessel can advance at a maximum speed of 3 knots, giving an increased encounter rate and maneuverability in recovery operations.

Skimmed liquids are pumped into towed mini-barges or floating storage bladders. Free water from the bottom of the mini-barge tank is decanted during the skimming and loading. The discharge hose, fastened upcurrent of the skimmer, directs the free water into the boomed area. The operator turns off the pump when the discharge water becomes black with oil. Mini-barges and floating storage bladders laden with recovered oil are towed to an intermediate storage platform for off-loading.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Select vessels, booms, and skimmers according to area, water depth restrictions, and function (see Tactic L-6).

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Work Boat	West Dock	barge while loading; tow boom			1 hr	
	LORI LSC Skimmer	West Dock	On-water recovery	2	4	1 hr	
or	Crucial 13/30 Skimmer	West Dock	On-water recovery	2		1 hr	2 hr
	Boom	All	On-water recovery	42 ft		1 hr	2111
	Work Boat	West Dock	Shuttle storage platforms	1	2	1 hr	
	249-bbl Mini-Barge (237 bbl available storage)	West Dock, Oliktok	Intermediate storage	2	_	1 hr	

^{* 50} bbl onboard recovered oil tank and off-loading PDP

TOTAL STAFF

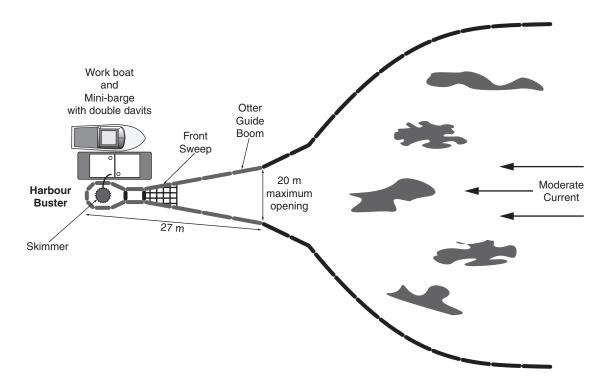
6

DECANTING

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Trash Pump (3-inch)	All	Decanting	1	1	1 hr	
Suction Hose (3-inch)	All	Decanting	≥20 ft	2 for setup	2 hr	2 hr
Discharge Hose (3-inch)	All	Decanting	≥50 ft	2 for setup	2 hr	

SUPPORT

• A trained aerial observer in a fixed-wing aircraft or helicopter tracks the oil location and movement from above and coordinates the on-water task force recovery effort.


CAPACITIES FOR PLANNING

• 1 hr to load mini-barge; 1.5 hr to unload.

- The oil recovery rate and number of mini-barges required (fill to 95% capacity) vary with the oil encounter rate.
- Approval to decant is needed from the Federal or State On-Scene Coordinator, as appropriate. Appropriate agencies will be consulted to determine site-specific stipulations.
- The amount of oil recovered will be estimated based on gauging by appropriate means (e.g., ullage tape) prior to offloading. Emulsion samples will be collected and analyzed for oil content.

Option A - When used under a bridge, the boom is anchored to each shore. An anchor and long tow line connects the boom to shore.

Option B - For open water operations, boom is towed with work boats or used with anchor systems to create a funnel that will deflect oil into the Harbour Buster collection area.

For either option listed above, a skimmer or direct suction unit is placed in the Harbour Buster collection point. Power packs on the mini-barge power the skimmer (if used). Recovered liquids are pumped into mini-barge or shoreside storage, as appropriate.

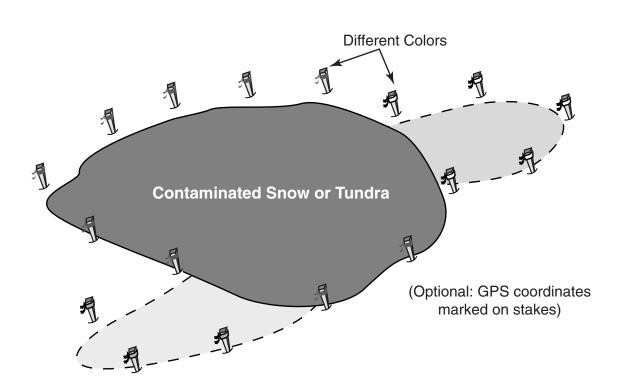
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Work Boat	West Dock	Tow mini-barge and operate skimmer and pump	1		1 hr.	
	Skimmer	All	On-water recovery	1		1 hr.	
	Suction Hose (3-inch)	All	Skimmer recovery	≥20 ft.	4		
	249-bbl Mini-Barge (237-bbl available storage)	West Dock, Oliktok	Intermediate storage; skim- mer power pack platform	1		1 hr.	2 hr.
	Harbour Buster	Endicott	On-water containment	1		1 hr.	
	Boom	All	On-water containment	variable	4	1 hr.	
	Work Boat	West Dock	Tow boom	2	4	1 hr.	
or	Anchor System	All	Anchor boom	2	4 for setup	1 hr.	

TOTAL STAFF FOR SETUP **TOTAL STAFF TO SUSTAIN OPERATIONS** 4 (8 FOR OPTION B)

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Fuel Truck	All	Provide diesel fuel for boats and pumps	1	Once per shift	1 hr	0.5 hr

RECOVERY CAPACITIES FOR PLANNING

• Mulitiple skimmers may be used with the Harbour Buster containment system. Type is limited by size of apex and mini-barge davit capacity.

- Using a chaffing or protective mat during Harbour Buster deployment greatly reduces the risk of damage to the equipment's otter boom guide.
- Boom height should be considered when selecting the proper boom to avoid splashover in fast current.
- Under Option A, ensure the Harbour Buster is folded and secured before towing it into position. Tow with two lines; the first a long tow line and the second a pass-off line so the Harbour Buster remains secured to the vessel thus taking the strain off responders.
- Both pelican hooks and carabineers may be used to secure the Harbour Buster to a bridge or shore, but pelican hooks are superior since they are safer to cut loose while under pressure during demobilization operations.
- · Long towlines facilitate easier tie-off when connecting the Harbour Buster boom system to shore. Consider a carabineer-type hookup to the shore.
- Tending vessels should carry an inflation pump onboard for re-inflating the Harbour Buster guide boom as needed.

The extent of an oil spill on snow or tundra is delineated so that the oil can be found if subsequent snowfall or windblown snow covers the spill.

Two crews walk the perimeter of the spill in opposite directions from a common point, and meet on the opposite side of the spill. As they walk, they place wood laths in the ground/snow every 50 to 100 feet at the edge of the spill, depending on terrain and the spill detail. The crews then retrace their routes to confirm their delineation. The crews may be assisted by snow machine, ATV, pickup truck with Mattracks, or similar personal motorized vehicle. The crews are part of the SRT.

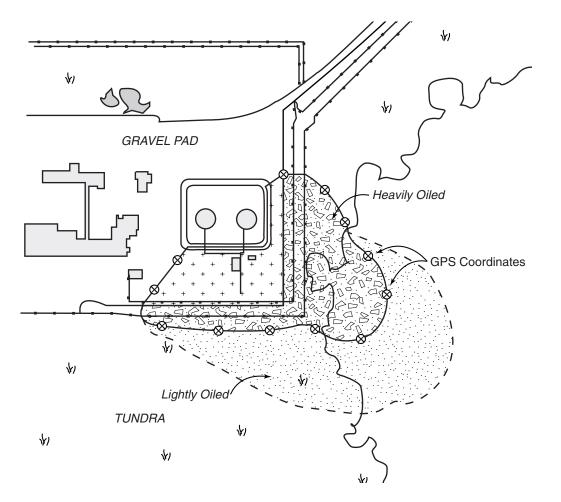
For a small spill, one crew is sufficient.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

· Each staking crew has 2 SRT staff.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Wooden Lath Stakes	All	Delineation	One for every 100 ft of spill perimeter	2	1 hr	0.5 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr
GPS Unit	All	Mapping	1 per crew	_	0.5 hr	0.5 hr


TOTAL STAFF

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
ATV	ACS, KRU, PBW	Support	2	4	1 hr	0.5 hr
Snow Machines	All	Support	2	2	1 hr	0.5 hr
Tracked Vehicle	KRU, PBW, Alpine	Support	1/crew	2 to 3	1 hr	0

- If the wind is blowing contaminated snow outside the originally staked perimeter, make subsequent delineations as necessary.
- Use flagging on the new stakes to distinguish delineation events.
- Designate further staking with different colors of flagging.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

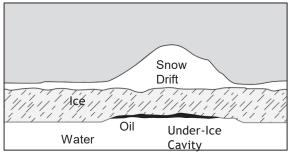
An initial hand-drawn map is delivered to other responders by the staff performing the initial surveillance. A more detailed and accurate map is then provided using one of the following options:

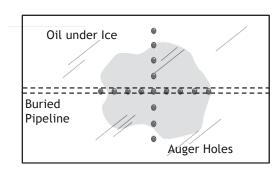
- The crews performing the delineation take GPS readings at each stake point. The point is recorded on the stake with a permanent marker, recorded in the GPS unit, and later entered into GIS software (available at all owner locations). A detailed map is drawn by one Situation Unit support staff using GIS software. The map is available within two hours after the information is provided to the SRT support staff.
- A survey crew is called out after the delineation crew has staked the area, and the contractor records the staked points with GPS or survey equipment. The contractor transfers the information to GIS software, and a detailed map is drawn from that information.
- A forward-looking infrared (FLIR) system-equipped aircraft flies over the spill-affected area, recording the fly-over with its FLIR. The infrared (IR) readings recorded by the fly-over are then overlain in a GIS software map of the area, and a detailed map of the spill is produced from that. This same task can be performed by a hand-held IR sensor available at Kuparuk.
- Ground-penetrating radar may also be used to detect oil in and under ice.

Mapping and Surveillance of Spill on Land (Page 2 of 2) TACTIC T-2

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Aircraft with FLIR	KRU	Surveillance	1	3	1 hr	1 hr
Hand-Held FLIR	KRU	Mapping	1/crew	Part of delineation staff	0.5 hr	0.5 hr
GPS Unit	All	Mapping	1/crew	Part of delineation staff	0.5 hr	0.5 hr


SUPPORT

• Support for this function is administrative.

- The choice of surveillance and mapping instruments is determined by the size of the spill, site access, available equipment, and weather.
- If the spill is re-delineated, update the maps.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which
 must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or
 any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented
 and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and
 biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic
 can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of
 plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

Oil released under a solid sea-ice sheet or that finds its way under the ice through cracks and leads will spread under the ice and collect in under-ice pockets. The underside of sea ice contains many of these pockets that reflect snow drifts on the surface of the ice. Snow drifts insulate the ice, thereby reducing ice growth and forming pockets. Once in a pocket, oil will tend to stay in place, since it takes a current of approximately 0.7 feet/second to push the oil out. Oil in pockets will become encapsulated as the ice grows.

Use an ice auger to drill holes and place underwater lights to shine up through the ice (the snow must first be removed from surface). A series of auger holes can be drilled in a line from the source to delineate the extent of under-ice oil contamination.

Ground-penetrating radar may also be used to detect oil in and under ice.

When delineating oil under ice, the ice thickness and characteristics must be identified. Personnel should be tethered with a body harness and should wear dry suits and PFDs, especially in the initial survey and on unknown ice. (See Tactic S-1 for Ice Entry Guidelines.)

Surface snow should be removed once the ice is safe for personnel and equipment. Mark the locations of large snow drifts that may create cavities under the ice and trap oil. These locations should be checked for oil pockets.

Begin profiling from shoreline, ground fast ice, or a stable area of known thickness, and work toward the area of suspected oil. Spacing between the holes will depend on the size of the area and the ice characteristics.

Handheld drills with 2" ice profiling bits are ideal for this tactic as they can quickly be used by one person.

Once an area of oil under the ice has been discovered, drill profiling holes laterally to identify the rough outline of the edges of the oil. It may be sufficient to drill fewer holes as the outline becomes clear. Use an auger to drill a larger hole to deploy underwater lights and cameras to aid in the delineation survey.

Freshwater ice will be easier to see through than sea ice. Frost layers, sediment and embedded oil may make it more difficult to see through the ice.

Mark the edges of the subsurface oil with survey marker poles or lath. Mark and cover any auger holes that might present tripping hazards.

Delineation under ice using approved dye as oil surrogate.

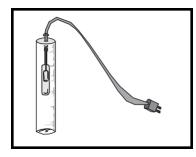
Underwater light used for oil under ice delineation.

Detection and Delineation of Under-Ice Oil (Page 2 of 2) TACTIC T-3

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Ice Auger	All	Detection	2	4	1 hr	0.5 hr
Underwater Light	All, except Badami	Detection	2	1	1 hr	0.5 hr
Front-end Loader w/Bucket	All	Snow Removal	1	1	1 hr	0.5 hr
ATVs w/Plow	ACS, GPB, END, KRU, Alpine	Snow Removal	2	2	1 hr	0.5 hr
Snow Machine	All	Personnel Transportation	4	4	1 hr	0.5 hr

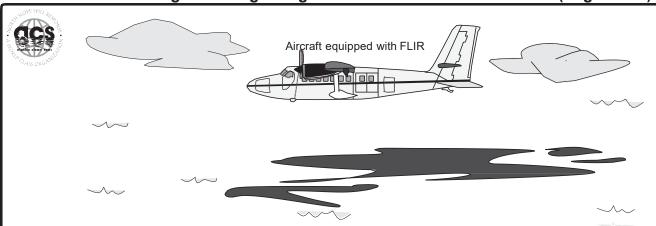

TOTAL STAFF

6

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Generator	All	Electricity	2	2 for setup	1 hr	0.5 hr
Light Plant	All	Illumination	<u>></u> 1	2 for initial setup, and 1 to check and fuel occasionally	1 hr	0.5 hr
Mechanic Truck	All, except Badami	Support equipment	1	1	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr

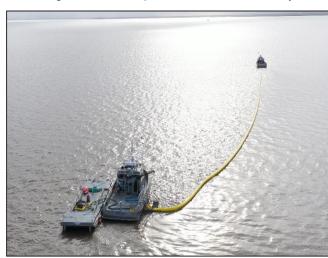
- Check ice thickness before moving heavy equipment onto ice (see Tactic L-7).
- A loader with tundra tires or possibly a rubber-tracked, wide-track dozer may have to move snowdrifts.
- · Winds will affect water movement even under ice.
- During the ice-growth period from December to April, oil films up to several inches thick can be completely encapsulated by new ice within 36 hours.
- In some situations, it may be most effective to cut a hole in the ice and have divers conduct an underwater survey for oil.



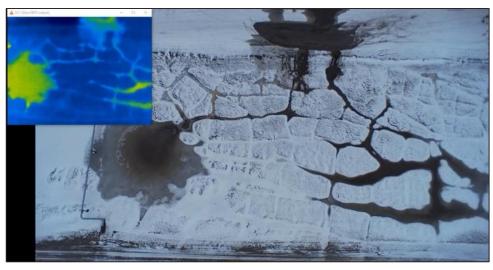
Underwater light.

Oil trapped in cavities highlighted with underwater lights and cameras.

TACTIC T-4 Discharge Tracking Using Manned and Unmanned Aircraft (Page 1 of 2)



Several options are available for tracking discharges in open water and on land:


Oil on water may be tracked visually using airplanes and helicopters with trained observers. NOAA offers several levels of Overflight Observer training online and through the Scientific Support Coordinators. NOAA also offers very useful checklists and job aids available for download from their website at https://response.restoration.noaa.gov/.

Oil slicks may be tracked by visual observation from a forward-looking infrared (FLIR) system-equipped aircraft. The aircraft provides radio reports and FLIR video images. Thicker areas of oil within an oil slick emit more thermal radiation than the surrounding water and show up in the image as white or hot spots. FLIR systems work both day and night.

An increasingly viable aerial alternative is the use of Unmanned Aircraft Systems (UAS). There are established UAS programs at several ACS and Member Companies locations. Available aircraft include visual and FLIR capabilities. All UAS operations are conducted in accordance with under Part 107 of the Federal Aviation Regulations. UAS operations are coordinated by the Air Operations Branch Director in the IMT.

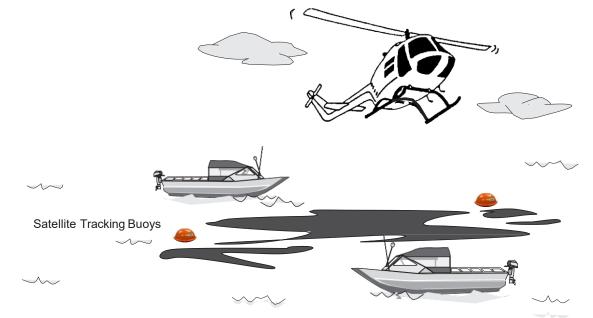
Discharge Tracking Using Manned and Unmanned Aircraft (Page 2 of 2) TACTIC T-4

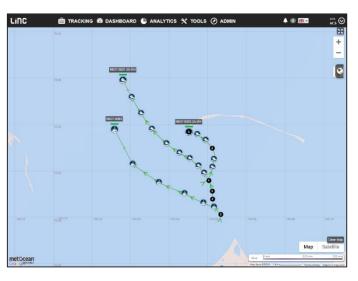
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

- Each aircraft carries two observation personnel: the FLIR operator and an additional oil observer.
- Operations using aircraft to direct response vessels should include direct radio communications with the vessels.
- UAS operations require a licensed Part 107 Remote Pilot. A dedicated, trained Visual Observer should be used whenever possible.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Aircraft with FLIR	KRU	Aerial tracking and response coordination	1	3	1 hr	1 hr
Helicopter	Various	Aerial tracking and response coordination	1	2	1 hr	1 hr
Small Unmanned Aircraft System	ACS, Alpine, KRU Nikaitchuq	Aerial tracking and response coordination	10	2	2 hr	1 hr


SUPPORT


- Aircraft operations can be conducted out of several active, supported airports across the North Slope.
- · Helicopter operations may be safely conducted from off-airport locations with adequate operational support.
- · UAS operations may be conducted from land or from response boats and barges.
- Video streaming from aircraft and UAS may be possible with appropriate support and depending on the range, weather, obstacles and telecommunications capabilities.

- Skimming operations use aerial observation reports to help them position for oil recovery. A helicopter can also help coordinate on-water operations.
- · Aircraft operations must follow agency guidelines when flying over sensitive wildlife areas.
- Unmanned aircraft can be deployed from response vessel to help direct on-water operations. A dedicated vessel or barge deck is ideal for UAS operations to allow for safe takeoff and landing operations. Special consideration must be given to vessel position, movement, stability and deck space when planning underway UAS operations.
- UAS operations should be coordinated by Air Operations Branch to ensure separation from manned aircraft and other potentially conflicting field operations.
- UAS capabilities have been demonstrated at the North Slope in summer and winter conditions. Wind and temperature conditions may present limitations and are assessed prior to and during every flight.
- Flights conducted under Part 107 of the Federal Aviation Regulations may require a waiver or authorization for certain activities, including operations at night, in controlled airspace, and beyond visual line of sight. Emergency authorization may be available for some operations.

f 2)

- Ice-hardened satellite tracking buoys are deployed by helicopter to locations of known or suspected oil in ice or under ice
- · Buoys may be placed in solid ice, broken ice or forming ice as long as safe ice access can be assured.
- Deployed buoy locations are tracked via the internet.

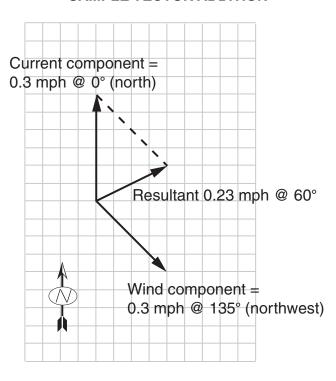
Discharge Tracking Using Tracking Buoys (Page 2 of 2) TACTIC T-4A

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

- The response vessel crew should activate the satellite tracking buoy and verify with the ICP that it is transmitting before deploying it.
- Internet access is needed to track the buoy locations. Two-way radio communications with response vessels is used to direct recovery assets to the buoy locations.

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Satellite Tracking Buoys	ACS, Alpine, Nikaitchuq	Track the oil slick	12	_	2 hr	1 hr
Work Boat	All	Deploy tracking buoys	1	2	2 hr	0
Helicopter	Various	Deployment of beacons	1	2	1 hr	1 hr
Ice Beacons	ACS Base	Track oil in ice	6	_	2 hr	1 hr
Ice Profiling Drills and Bits	All	Drill hole to deploy buoys	1	2	1 hr	1 hr


SUPPORT

- · A response vessel deploys the satellite tracking buoys into the slick during response operations.
- Ice Beacons can be deployed by ground teams or by helicopter, depending on ice access and conditions.
- Buoy movements are tracked in the Incident Command Post via internet and relayed by radio to response vessels.

- Buoys may have a high-intensity electronic marine asset recovery strobe tethered to it to assist with visually locating it for retrieval.
- This tactic may be used to track oil in ice that is not thick enough to support on-ice response tactics, and to track oil that has been released under ice or is embedded in the ice.
- Ice-hardened hulls are fitted onto iSphere satellite tracking buoys and deployed using a 2" ice profiling drill bit. The long shaft keeps the buoy from being covered over with drifting snow.
- · Activated buoys are tracked in the Incident Command Post via the internet.
- The buoys have been tested in ice and water and will float upright and continue transmitting in the event that the ice cracks or thaws around the buoy.

SAMPLE VECTOR ADDITION

VECTOR ADDITION

Movement of oil on the open ocean is affected by two forces: water current and the wind. Oil is predicted to move at the same speed as the underlying water and at about 3% of the wind speed. The direction and speed of movement of oil on water can be predicted by vector addition. An example is provided above.

Reports of current wind and temperature and 24-hour weather forecasts are available from 659-5888 (recording) and 659-5251 (Prudhoe Bay airport tower). Surface water direction and speed may be estimated by three methods:

- · Reports of observed water movement from field staff,
- The oceanography volumes of the Endicott Environmental Monitoring Program annual reports (e.g., U.S. Army Corps of Engineers, 1990), and
- Alaska Clean Seas Technical Manual Atlas.

Wind generally drives ocean surface currents in the vicinity of the North Slope oil production facilities. Wind shifts can reverse surface water currents within a few hours (Bryan Trimm, pers. comm., 1997). Coastal landforms affect the nearshore currents.

HADDE SHILL ROSE

TRAJECTORY MODELING

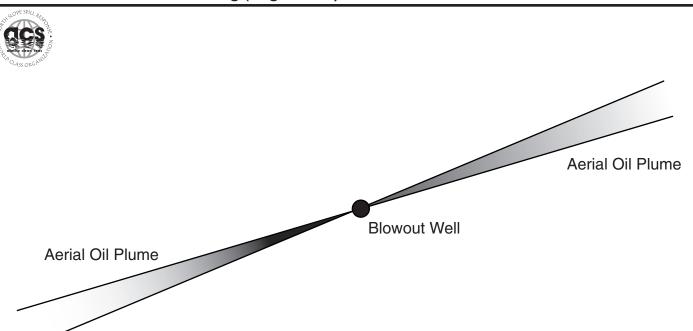
The National Oceanic and Atmospheric Administration (NOAA) has the ability to provide computer-generated predictions of oil movement on water. NOAA provides the predicted trajectory based on data on the product released, its location, current and predicted weather.

ACS maintains an Internet account with NOAA for downloading trajectory predictions. NOAA requires approximately 3 hours to calculate the trajectory. The model can also be accessed by contacting Catherine Berg, Scientific Support Coordinator, NOAA Emergency Response Division (office 907-428-4143 and mobile 907-529-9157) or NOAA Hazardous Materials Response and Assessment Division in Seattle (206-526-6317).

An example of the exact information required to run the trajectory analysis is provided below.

•	lease of oil, please provide spi Insmit the trajectories by Intern Itify Alaska Clean Seas of the t	et to Alaska Clean Seas
Incident Name	Release Location Lat.	Long.
Geographic Description:		
Is release continuing? ☐ Yes	☐ No Time of Release	Volume Spill
If continuing release, what is rate	e?bbl/hr	
Material Spilled	Current Weather Air Temp	o°F
Wind Speedkt Wind	Direction 24 hour F	orecast Air Temp°F
Wind Speedkt Wind	Direction	
Current Slick Location Lat	Long.	
Time of Current Slick Location (Optional)		
FOR DRILLS ONLY 1. Is this a tabletop drill? ☐ Yes	s □ No	
 Is this at tabletop drift?		
3. Are objects in water being us	sed to simulate oil? Yes	No
4. Are other trajectory models b	peing used? ☐ Yes ☐ No	

REFERENCES


Waldman, G. A., R. A. Johnson, and P. C. Smith. 1973. The spreading and transport of oil slicks on the ocean in the presence of wind, waves, and current. AVCO Systems Division. USCG Report CG-D-17-73.

Fay, J . A. 1969. The spread of oil slicks on a calm sea. Pages 53-63 in *Oil on the Sea.* D. P. Hoult (ed.). Plenum Press, New York.

McCourt, J. 1998. Interaction between oil and suspended particulate matter in the Yukon River. Prepared by S. L. Ross Environmental Research Ltd. for Alyeska Pipeline Service Company. 22 pages plus appendices.

National Research Council. 1989. *Using Oil Dispersants on the Sea*. Marine Board Commission on Engineering and Technical Systems. National Academy Press, Washington, D.C. 335 pages.

U.S. Army Corps of Engineers. 1990. *Endicott Environmental Monitoring Program Final Report*. Prepared by Science Applications International Corporation.

The purpose of this tactic is to provide contingency planners with a method for determining how oil will be deposited from a surface well blowout, for use in developing response scenarios in facility-specific contingency plans.

An unobstructed surface well blowout can send a plume of oil into the atmosphere. The distribution of oil falling from the aerial plume depends upon the height that the oil is propelled and the size of the oil droplets. The gas flow rate controls the plume height and subsequent fallout distribution.

Downwind oil distributions predictions are modeled for the following conditions:

- Alaska North Slope crude oil
- Atmospheric Stability Class D
- Median oil drop diameter of 750 μm
- Release height (feet above ground surface) of 0

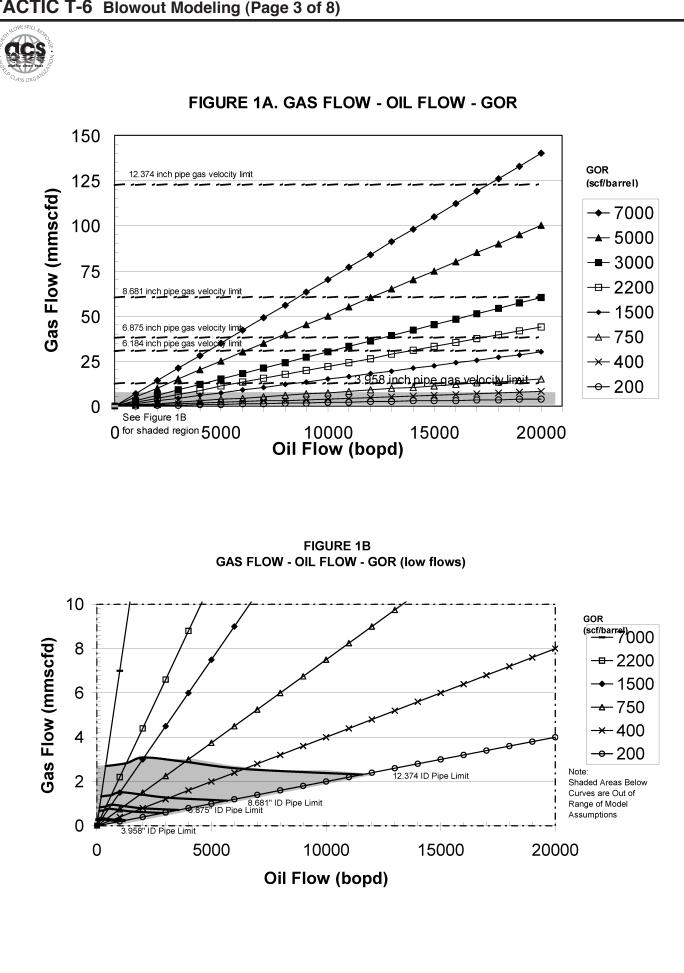
The methods used to complete the modeling are described in *Oil Deposition Modeling for Surface Oil Well Blowouts* (Belore, McHale & Chapple, 1998 Arctic and Marine Oilspill Technical Program, Environment Canada).

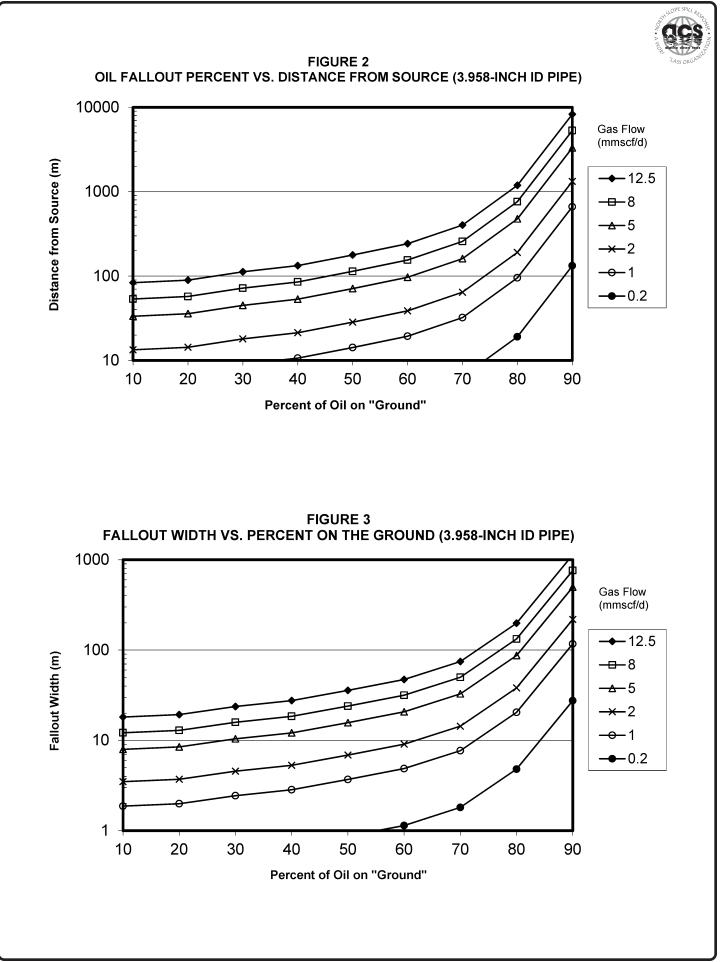
Wind speed has no net effect on the deposition pattern. A high wind reduces the plume rise height by bending the plume but it also carries the oil downwind faster. Drops fall to the ground sooner but travel just as far from the source.

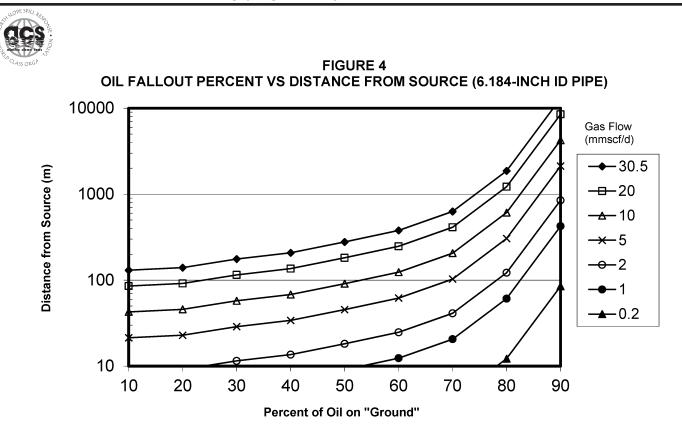
Figures 1A and 1B associate typical gas flow rates with oil flow rates and gas-to-oil ratios. A gas flow rate found in Figures 1A or 1B is used to select curves in Figures 2 to 11. Figures 2 to 11 have been developed using an oil drop size distribution with a 750 µm volume median diameter. This drop size distribution was derived from an annular, two-phase flow situation. The shaded area in Figure 1B identifies flows outside of the annular flow conditions for which this drop size distribution was derived. The oil drops formed under these "low-flow" conditions are likely to be larger than those used to develop Figures 2 to 11. Therefore, Figures 2 to 11 are not valid for the flow conditions that fall in the shaded areas below the "limit lines" plotted for each of the pipe diameters in Figure 1B.

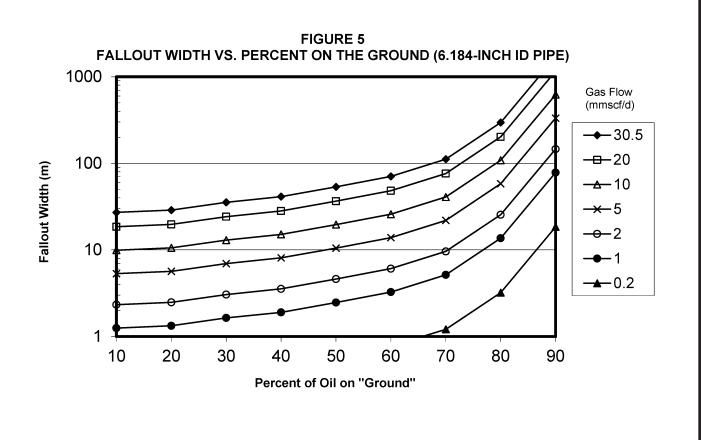
Figures 2 to 11 show the downwind length and width of the aerial plume where a percentage of the total oil flow has fallen to the surface for different outlet pipe diameters. The highest gas flow curve shown in each of these figures represents the flow rate where sonic velocity is achieved (the maximum possible exit velocity). Use the largest gas flow curve in the figure if higher gas flow rates are predicted for releases from pipes of these diameters. Higher flow rates (at STP) than those shown in the figures are possible due to pressure/density factors at the pipe exit.

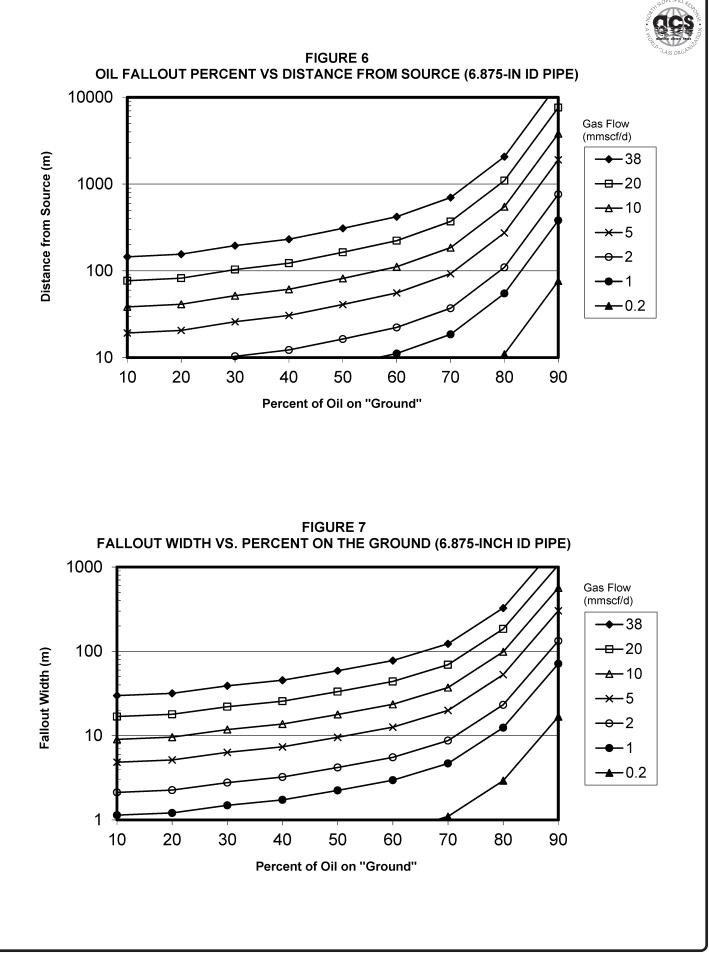
Ten percent of the oil is assumed to be in the form of drops so small (50 m or less) that they do not fall to the ground but are held aloft by atmospheric turbulence.

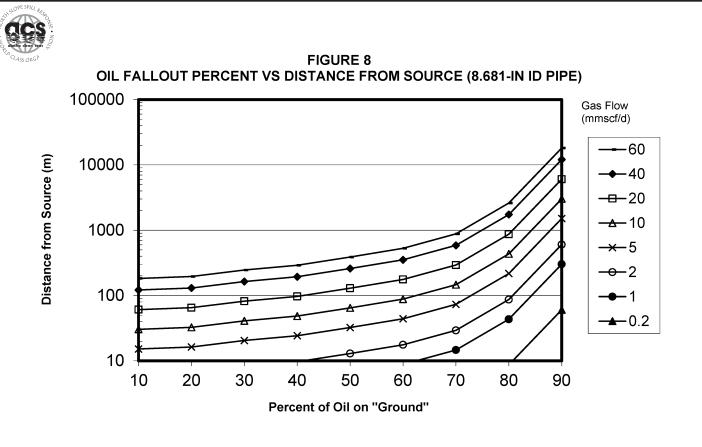

The following example illustrates how to use Figures 1 through 11:

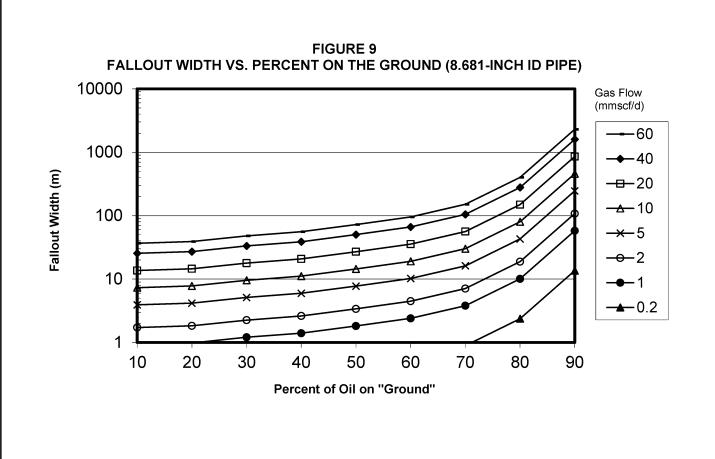

A well is assumed to be discharging oil and gas at a rate of 12,000 bopd with a gas-to-oil ratio (GOR) of 750 scf/bbl through a 6.184 inch inner diameter pipe. To determine the amount of oil that falls within 200 meters from the source, complete the following steps:

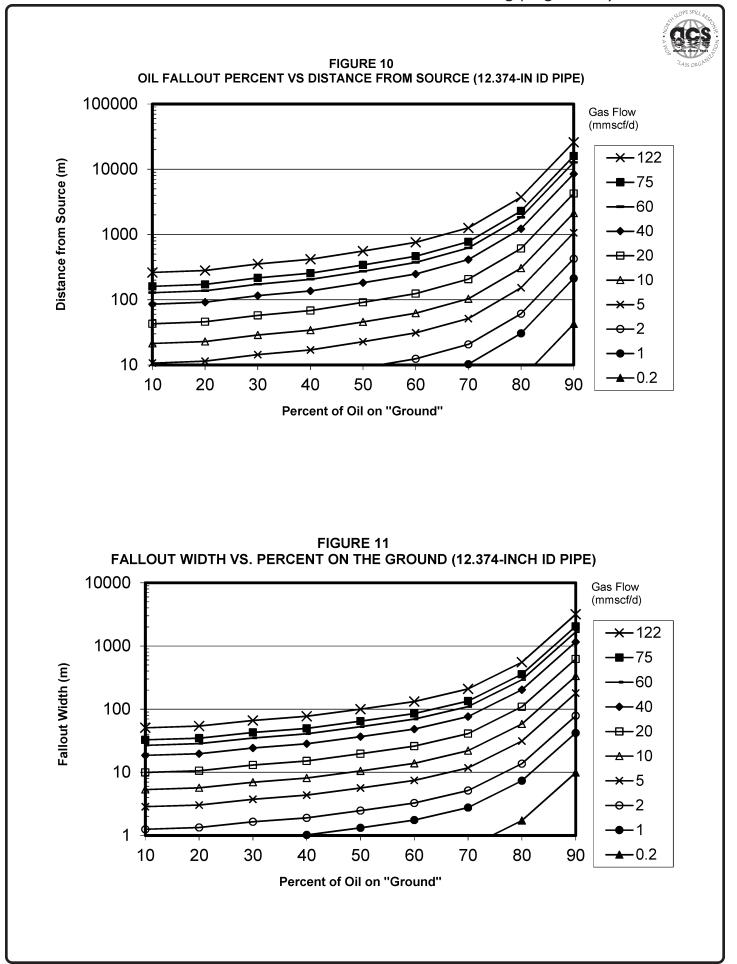

From Figure 1b, determine the gas flow to be about 8.5 mmscf/d.


On Figure 4, interpolate between the 5 and 10 mmscf/d curves to approximate the 8.75 curve. From this interpolated curve, get the percent of oil falling within 200 meters of the source (about 72%). The total volume of oil falling within 200 meters of the source is the total oil flow of 12,000 bopd times 0.72 times the duration of the blowout period.


To determine the width of the fallout at 200 meters, use Figure 5 and determine the fallout width at 72% of oil on "ground" (about 40 meters) for 8.75 mmscf/d. This is the width that would be oiled if the wind came from the same direction during the entire release. If the wind is shifting, the plume will deposit oil over a much wider area. If the wind's directional persistence throughout the release period is known, these values can be applied to determine the percentage of oil falling and the resulting oil thickness in the various sectors around the spill source.







SPILL VOLUME ESTIMATION

OIL IN OR ON SOILS

- It is difficult to estimate the amount and extent of subsurface pollution from hydrocarbons spilled and trapped in soil.
- Hydrocarbons in soil may exist in three phases:
 - As vapors within the pore spaces
 - As residual liquid attached to or trapped between soil particles
 - As dissolved components of oil in moisture surrounding soil particles
- · Generally, oil retention increases with decreasing grain size, poorer sorting of soils, and increasing oil viscosity.
- · Oil retention of initially water-saturated soils is generally lower than for initially dry soils.
- The "retention capacity" factor for different types of soils provides an estimate of volume of liquid retained per unit pore volume. Following are rules of thumb for retention capacity of soil types:

	Silt	Sand	Gravel
Crude Oil	12% - 20%	4% - 13%	0% - 5%
Diesel	7% - 12%	2% - 8%	0%- 2%
Gasoline	3% - 7%	1% - 5%	0% - 1%

OIL ON ICE AND SNOW

- · Field experience and data from actual spills indicate that oil-holding capacities of ice and snow range as high as 1,600 barrels per acre.
- Equations for estimates:

 $V (bbl) = (4.14 \times 10^5) \times A (mi^2) \times t (in.)$

V (bbl) = 647 x A (acres) x t (in)

 $V \text{ (bbl)} = (1.48 \times 10^{-2}) \times A \text{ (ft}^2) \times t \text{ (in.)}$

 $V (gal) = 42 \times V (bbl)$

V = Volume of oil spill

A = Area of oil slick or contaminated zone

t = Thickness of oil slick or contaminated zone (with snow, t = equivalent oil thickness)

OIL ON WATER

- Oil Color
 - Sheen (silver-gray): Use 10⁻⁶ inch as average thickness
 - Iridescent (blue green): Use 10⁻⁴ to 10⁻⁵ inch as average thickness
 - Blue-black (aged, wind-blown): Use 10⁻² to 10⁻³ as average thickness
 - Blue-black (fresh/equilibrium conditions): Use 10⁻¹ inch as average thickness
 - Emulsion (brown/ "chocolate mousse"): Use 10⁻¹ inch as average "oil" thickness (actually 2 to 3 x 10⁻¹ inch with 50% to 70% water).
- Equations for estimates:

V (bbl) = $4.14 \times 10^5 \text{ A (mi}^2) \times \text{t (inches)}$

V (bbl) = 647 A (acres) x t (inches)

V (bbl) = $1.48 \times 10^{-2} \text{ A (ft}^2) \times \text{t (inches)}$

 $V (gal) = 0.624 A (ft^2) x t (inches)$

V = Volume of oil spill

A = Area of slick at thickness t

t = Thickness of oil slick

Spill Volume Estimation (Page 2 of 2) TACTIC T-7

ENCOUNTER RATE CALCULATIONS

 Calculations used to estimate the amount of oil moving past in a stream, entering a collection boom, or in a windrow/patch of oil.

EnR (gpm) = $37 \times W$ (ft) $\times V$ (ft/sec) $\times t$ (in)

EnR (bbl/hr) = 53.33 x W (ft) x V (ft/sec) x t (in)

EnR (bbl/day) = $(1.28 \times 10^3) \times W$ (ft) x V (ft/sec) x t (in)

W = Width of oil swath

V = Velocity in feet per second (1 knot = 1.68 ft/sec)

t = Thickness of oil slick

ESTIMATING SPILL SOURCE VOLUMES AND FLOW RATES

LEAK RATE CALCULATIONS

1 gallon per day One drop/second

Thin stream breaking to drops 24 gallons per day

Small stream (about 1/8 inch) 84 gallons per day

Large stream (about 1/4 inch) 936 gallons per day

A simple rule of thumb is to divide 10,000 by the number of seconds it takes to fill a five-gallon pail.

ESTIMATES FOR CAPACITY

- Pipeline per linear foot
 - For volume in gallons per foot: square the inside diameter (in inches) and multiply by 4 percent (0.04)
 - For volume in barrels per foot: square the inside diameter (in inches) and divide by 1,000
 - To find the volume of a pipeline in barrels per mile: square the inside diameter (in inches) and multiply by 5.13
- For vertical cylindrical tanks:

V (gal) = 0.0034 d (in.) x d (in.) x h (in.)

V (gal) = 5.88 D (ft) x D (ft) x H (ft)

d = diameter in inches

D = diameter in feet

h = height of liquid in inches

H = height of liquid in feet

NOTE:

The National Oceanic and Atmospheric Administration publishes an observer's guide that contains more information on estimating oil spill volumes.

Arctic Response Technology, Oil Spill Preparedness. June 12, 2016 Remote Sensing Guide to Oil Spill Detection in Ice-Covered Waters.

Table 3-1 Remote Sensing Options for Oil on Water with Slush/Frazil Ice (Categories 1-2)

Platforms	Sensors	Key Capabilities	Limitations
Offshore Platform, Vessel, Aircraft, UAV	VIS/OPT TIR/FLIR	Real-time detection and mapping of visible oil on ice and water surfaces Estimation of oil thicknesses by BAOAC and/or direct measurement Marine mammal detection and monitoring Real-time monitoring from multiple platforms for improved oil encounter rate Detection of oil thicknesses >0.01 mm Marine mammal detection and monitoring UAVs can be launched/retrieved from offshore platforms/vessels and rotary-wing UAVs are capable of vertical take-off/landing and hover	Skilled observer required to detect and estimate oil thickness and extent Performance degraded by darkness, fog, rain and snow Personnel safety for use of stable ice surface as a platform Performance degraded by fog, rain and snow Unreliable for very thin oil thicknesses High rate of false positives in bright light Small payload capacity for commercial UAVs Local jurisdiction UAV operating restrictions for weight, speed, altitude and operational
Aerostat	OPT, TIR	Aerostats can be deployed from working multipurpose vessels for continuous real-time surveillance and spotting Marine mammal detection and monitoring	Performance degraded by darkness, fog, rain and snow Operational wind speed limits (≤22 m/s or ≤41 knots) Small payload capacities for vessel-tethered aerostats View coverage
Fixed-wing Aircraft	LFS/ LIDAR	Detection of oil on or near the water surface Classification of oil type and measurement of oil thicknesses between 0.1 and 20 microns on water surfaces	Performance degraded by fog, rain and snow LFS requires low altitude flying (<500 m) Dedicated aircraft required for large units with high power consumption – not generally available on existing aircraft
	ОРТ	Detection and 2D mapping of oil under ice Provides under ice imagery in low light conditions using high dynamic range camera and strobe light	Performance degraded by low light and water with low clarity Power requirements for supplemental lighting Bandwidth limitations for onboard processing of imagery and telemetry
	LFS	Detection of fresh oil under ice and in water column Measurement of oil thicknesses between 0.1 and 20 micron	Florescence polarization needed to reduce false alarms
AUV/ ROV	Sonar	Detection of fresh oil under ice unaffected by visibility on the surface Demonstrated potential in basin tests to detect encapsulated oil through up to 6-7 cm of new ice and provide estimated thicknesses for oil layers >1 cm (may perform better under field conditions) Multibeam may represent the optimum system in that it provides 3D imaging under ice surface topography as well as oil detection Optimal frequencies for detecting oil under the ice or encapsulated oil are 100 to 200 kHz	Trained operator needed to interpret multibeam data Encapsulated oil detectable with up to ~4-7 cm of new ice beneath the oil layer – this limitation may diminish somewhat with the ability to use higher powers in an open ocear setting (compared to basin tests)

Platforms	Sensors	Key Capabilities	Limitations
Stable Ice Surface, Offshore	VIS/OPT	Real-time detection and mapping of visible oil on ice and water surfaces Estimation of oil thicknesses by BAOAC or direct measurement Marine mammal detection and monitoring	Skilled observer required to detect and estimate oil thickness and extent Performance degraded by darkness, fog, rain and snow Personnel safety for use of stable ice surface as a platform
Platform, Vessel, Aircraft, UAV	TIR/FLIR	Real-time monitoring from multiple platforms for improved oil encounter rate Detection of oil thicknesses >0.01 mm Marine mammal detection and monitoring UAVs can be launched/retrieved from offshore platforms/vessels and rotary-wing UAVs are capable of vertical take-off/landing and hover over target	Performance degraded by fog, rain and snow Unreliable for very thin oil thicknesses High rate of false positives in bright light Small payload capacity for commercial UAVs Local jurisdiction UAV operating restrictions for weight, speed, altitude and operational separation distances
Vessel	Marine Radar (x-band)	 Detection of oil as long as there is sufficient wind wave action to differentiate between oiled and non-oiled ocean areas Support for aircraft and satellite detection at specific locations 	 Performance degraded by wind speeds less than ~5.5 kph (~3 knots) and greater than ~22.5 kph (~12 knots) and wave heights between 0.2 to 1 m Antenna height limits effective range to about 8 km Marine radar degraded by calm seas and could be expected to deteriorate with increasing ice concentrations
Aerostat	OPT, TIR	Aerostats can be deployed from working multipurpose vessels for continuous real-time surveillance and spotting Marine mammal detection and monitoring	Performance degraded by darkness, fog, rain and snow Operational wind speed limits (≤22 m/s or ≤40 knots) Small payload capacities for vessel-tethered aerostats View coverage
	UV	Detection of oil thicknesses between 0.1 and 10 microns Support for TIR/FLIR to determine the oil's areal extent Identification of thin versus thick oiled areas when used in conjunction with infrared imagery	Cannot detect oil thicknesses >10 micron Low flying altitude and narrow coverage range Requires daylight and clear atmospheric conditions Susceptible to false alarms
Fixed-wing Aircraft	LFS/ LIDAR	Detection of oil on or near water surface Classification of oil type and measurement of oil thicknesses between 0.1 and 20 microns on water surfaces	Performance degraded by fog, rain and snow LFS requires low altitude flying (<500 m) Dedicated aircraft required for large units with high power consumption – not generally available on existing aircraft
	SLAR	 Detection of oil over large areas in wind-wave heights between 0.2 and 1 m, or in smooth swell conditions Up to 40 km coverage range from each side of aircraft (dependent upon flight altitude) Useable day and night through clouds and fog 	Calm seas (wind speeds < 5.5 kph or ~3 knots) or rough seas (wind speeds > 22.5 kph or 12 knots) False alarms possible in low wind or ice conditions that dampen waves Unreliable detection in close pack ice
Satellite	SLAR	 Broad swath coverage ~100 to 10,000 km Spatial resolution <1 to 250 m Useable day and night detection through clouds and fog 	Requires trained interpretation specialist Image collection frequency and delivery lag times High rate of false alarms Unreliable detection in close pack ice

Platforms	Sensors	Key Capabilities	Limitations
Stable Ice Surface, Offshore Platform,	VIS/OPT	Real-time detection and mapping of visible oil on ice and water surfaces Estimation of oil thicknesses by BAOAC and/or direct measurement Marine mammal detection and monitoring	Skilled observer required to detect and estimate oil thickness and extent Performance degraded by darkness, fog, rain and snow Personnel safety for use of stable ice surface a a platform False positives (e.g. dirt on the ice exposed in the spring) with difficulty in distinguishing between oiled and clean melt pools under different lighting conditions
Vessel, Aircraft, UAV		Real-time monitoring from multiple platforms for improved oil encounter rate Detection of oil thicknesses >0.01 mm Marine mammal detection and monitoring UAVs can be launched/retrieved from offshore platforms/vessels and rotary-wing UAVs are capable of vertical take-off/landing and hover over target	 Performance degraded by fog, rain and snow Unreliable for very thin oil thicknesses High rate of false positives in bright light Small payload capacity for commercial UAVs Local jurisdiction UAV operating restrictions for weight, speed, altitude and operational separation distances
Aerostat	OPT, TIR	Aerostats can be deployed from working multipurpose vessels for continuous real-time surveillance Marine mammal detection and monitoring	 Performance degraded by darkness, fog, rain and snow Operational wind speed limits (≤22 m/s or ≤40 knots) Small payload capacities for vessel-tethered aerostats View coverage
Fixed-wing Aircraft	UV	Detection of oil in spring melt pools) thicknesses between 0.1 and 10 microns) Support for TIR/FLIR to determine the oil's areal extent Identification of thin versus thick oiled areas when used in conjunction with infrared imagery	Cannot detect oil thicknesses >10 micron Low flying altitude and narrow coverage range Require daylight and clear atmospheric conditions Susceptible to false alarms
Aircrait	LFS/ LIDAR	Detection of oil exposed on ice surfaces Classification of oil type and measurement of oil thicknesses between 0.1 and 20 microns on water surfaces	Performance degraded by fog, rain and snow LFS requires low altitude flying (<500 m) Dedicated aircraft required for large units with high power consumption – not generally available on existing aircraft
Stable, ice Surface, Helicopter	GPR	Detection of oil on the ice surface under snow	Qualified operator is required to accurately interpret data
Stable Ice Surface	Dogs	Detection of oil hidden under snow Can be equipped with GPS positioning devices for marking sites and tracking Sensitivity to hydrocarbon odors for significant distances downwind from source (several kilometers of more)	Safety of dogs and handlers working on floating pack ice Excessive exposure to cold and working hours Requires specially trained dogs and experienced handlers Safe transportation, warm shelter, medical support and food Wildlife interaction avoidance

Table 5-1 Remote Sensing Options for Oil under/in Ice (Categories 9 – 12)

Platforms	Sensors	Key Capabilities	Limitations
	VIS/OPT	Real-time detection and mapping of visible oil spread under ice Estimation of oil thicknesses by direct measurement	Requires artificial illumination source below ice to detect oil Skilled observer to detect oil and estimate oil thickness and extent Practical application needs conditions where the ice is relatively clear of snow and the ice is not too thick
Stable Ice Surface, helicopter	Dogs	Potential detection of oil under or in ice with greater probability where oil is mixed into deformed ice with some pathway to the surface for odors Can be equipped with GPS positioning devices for marking sites and tracking Sensitivity to hydrocarbon odors for significant distances downwind from source (several kilometers or more)	Safety of dogs and handlers working on floating pack ice Excessive exposure to cold and working hours Requires specially trained dogs and experienced handlers Safe transportation, warm shelter, medical support and food Wildlife interaction avoidance
	GPR	Detection of oil under and confined within ice	Qualified operator is required to accurately interpret data Helicopter-support GPR performance significantly degraded by warm ice temperatures – possible detection only for oil layers at shallow depth in the ice
	OPT	Detection of oil and 2-D mapping of oil under ice Provides under ice imagery in low light conditions using high dynamic range camera and strobe light	Performance degraded by low light and water with low clarity Power requirements for supplemental lighting given llikely low levels of natural light beneath snow-covered ice Bandwidth limitations for onboard processing of imagery and telemetry
AUV/ROV	LFS	Detection of fresh oil under ice and in water column Measurement of oil thicknesses between 0.1 and 20 micron	Florescence polarization needed to reduce false alarms
	Sonar	Detection of fresh oil under ice unaffected by visibility on the surface Demonstrated potential in basin tests to detect encapsulated oil through up to 6-7 cm of new ice and provide estimated thicknesses for oil layers >1 cm (may perform better under field conditions) Optimal frequencies for detecting oil under the ice or encapsulated oil are 100 to 200 kHz	Trained operator needed to interpret multibeam data Encapsulated oil detectable with up to ~4-7 cm of new ice beneath the oil layer – this limitation may diminish somewhat with the ability to use higher powers in an open ocean setting (compared to basin tests)

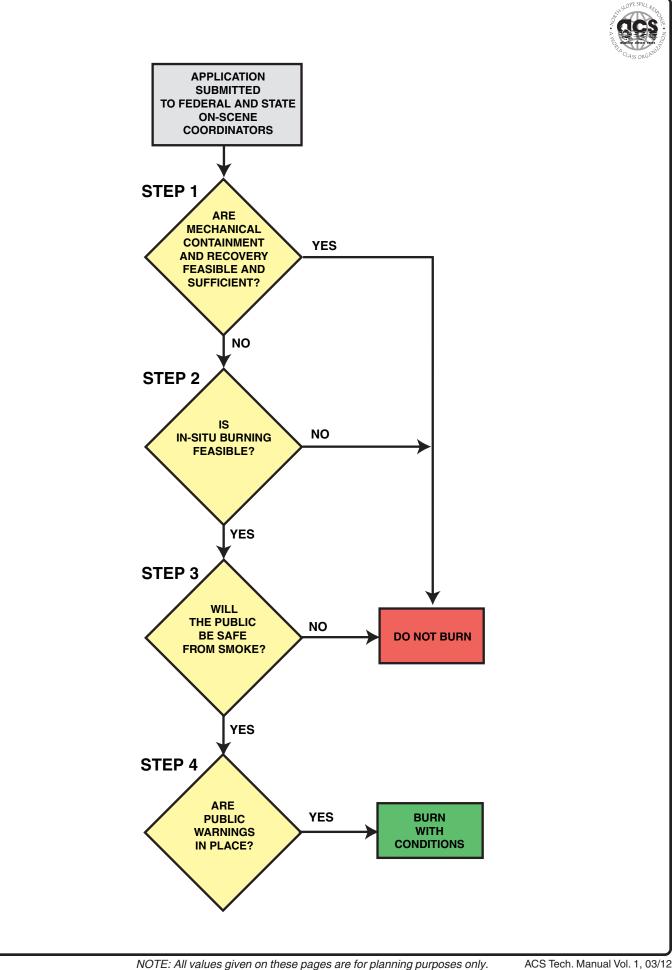
										Platfor	Platform / Sensor							
			Stable I	Stable Ice Surface ¹	, , ,		AUV/ROV		8ॐ	Offshore Platform/ Vessel/Aerostat ⁵	form/ stat ⁵	L		₹	Aircraft/UAV			Satellite
Ö	Oil in Ice Distribution	VIS/ OPT ²	TIR2	VIS/ TIR ² Dogs	GPR³	OP	LFS	Sonar	<u>≥</u> 9	7/ TIR/ Mari	Marine Radar ⁶	VIS/ OPT ²	TIR/ FLIR²	Ž	LFS/ LIDAR ^{2,7}	SLAR ^{6,7}	GPR3,7	SAR
)					ter w	9								
_	Oil falling on slush/frazil ice						Ρ4	P4	>	>	z	>	>	z	у,	z		Z
2	Oil rising below slush/frazil ice					₽4	₽.	Ρ4	₽_	P4	Z	P4	P4	z	Pé	z		z
m	1/10 to 3/10 concentrations								>	>	>	>	>	>	%	≻		>
4	4/10 to 6/10 concentrations								>	>	۵	>	>	>	Ρ¢	۵		۵
5	7/10 to 9/10 concentrations	۵	۵						>	>	z	>	>	z	P6	z		z
							Ö	Oil on ice - any concentration	ny concen	tration								
9	Exposed on solid ice surface	>	>	>					>	>		>	>	z	>	Z		z
_	Under snow cover	<u>a</u>	z	>	>				z	z		z	z	z	z	z	>	z
∞	Exposed in spring melt pools	>	>	>					>	>		>	>	۵	z	Z		z
							Oil und	Oil under/in ice - any concentration	- any con	centration								
6	Smooth ice	₈ L		۵	>	>	>	>								z	Д.	z
10	Deformed ice			۵	z	δД	Ь	<i>ډ</i>								z	z	z
=	Encapsulated layer	8		۵	>	P10	P10	P10								Z	۵	z
12	Dispersed vertical migration			2	0	0	2	-								-2	c	-

Table 6-2 Remote Sensing Platform and Sensor Key Platform/Sensor Description

riationii, scrisor	Description
Aerostat	Moored surveillance balloon (requires vessel or small boat platform)
AUV	Autonomous underwater vehicle
Dogs	Dogs trained for olfactory detection of hydrocarbon fumes
FLIR	Forward-looking infrared sensor
GPR	Ground penetrating radar (airborne derivative under development known as Frequency Modulated Continuous Wave radar)
LFS	Laser fluorosensor (can be airborne or subsea)
LIDAR	Light detecting and ranging system, including spectral fluoroscence/reflectance LIDAR systems
Marine Radar	High speed shipborne radar
OPT	High definition cameras and underwater, high dynamic range cameras
ROV	Remotely operated underwater vehicle with umbilical cable
SAR	Synthetic aperture radar (historically used by aircraft, now limited to satellite platforms)
Sonar	Acoustic sensors including narrowband single-beam sonar, multi-beam imaging sonar, broadband sonar, and side-scan sonar
SLAR	Side-looking airborne radar (commonly fitted to surveillance aircraft)
TIR	Thermal infrared sensor (short, medium and long wave sensors). Presently fitted to aircraft or vessels as FLIR (medium to long wave)
UV	Airborne ultraviolet reflectance scanner (traditionally combined with IR in one system as UV/IR)
UAV	Unmanned aerial vehicle (fixed-wing or rotary-wing)
VIS	Visual observation

Information in this tactic is taken from the *In-Situ Burning Guidleines for Alaska*, Revision 1, August 2008, prepared by the Alaska Department of Environmental Conservation, the U.S. Coast Guard, and the U.S. Environmental Protection Agency, Region 10.

Before in-situ burning can be used a spill control measure, regulatory approval must be obtained. First complete the application and burn plan in Tactic B-1A and submit it to the Unified Command. Approval is required for the burn to proceed.


Refer to pages 3 and 4 of this tactic for information on safe distances from downwind human populations.

Once in-situ burning is approved, the following steps are involved:

- 1. Collect and concentrate the oil using a fire-resistant boom, ice floes, ice pits, or other natural features as gathering places for burn.
- 2. Ignite the oil using the Heli-torch or hand-held igniter, making sure to avoid flashback and ignition of the spill
- 3. Monitor the burn, maintaining constant watch on the fire and smoke plume, condition of containment boom, speed and position of towing vessels, and other safety hazards and issues.
- 4. Recover and dispose of the burn residue.

NOTE

Proper safety procedures must be followed for burning, and the necessary personal protective equipment (PPE) must be used.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

The following information is summarized from the In-Situ Burning Guidelines for Alaska, Revision 1, August 2008.

Table 1 below lists the general safe distances separating an in-situ burn and downwind, populated areas in flat terrain. Figure 1 below shows a bird's-eye of the zones for in-situ burns on populated flat land and on water within 3 miles of shore.

Table 1
Safe Distances Between In-Situ Burns
and Downwind Human Populations in Flat Terrain

Location of Fire	Green Zone	Yellow Zone	Red Zone
Flat terrain on land			
Water <3 miles from shore	>3 miles	1 to 3 miles	<1 mile
Water >3 miles from shore	>1 mile	not applicable	<1 mile

On water more than 3 miles from shore, the green zone safe distance is 1 mile from the public.

On land or on water less than 3 miles from shore, the green zone safe distance is 3 miles from the public. Burning at a green zone safe distance from the public is acceptable following Level 1 public notification.

The yellow zone distance extends from 1 to 3 miles downwind of an in-situ burn, and within 45 degrees of the smoke plume, when the burn is on land or on water within 3 miles of shore. The quadrant shape of the zone protects people from smoke subjected to minor wind shifts.

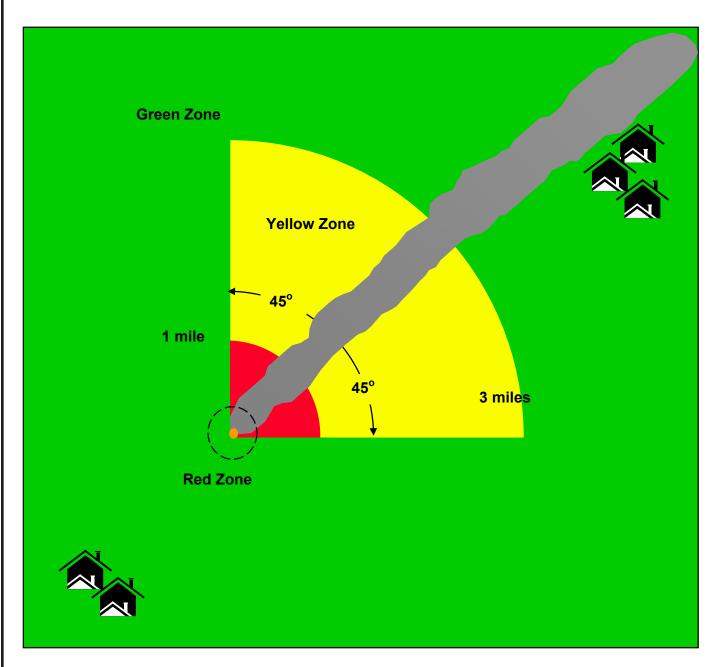
The on-scene coordinators may authorize burning following Level 2 and Level 3 public notifications, warning, and sheltering in place or evacuation.

The red zone distance is within 1 mile of any in-situ burn and within 45 degrees of the smoke plume. The on-scene coordinators may authorize burning in the red zone following public notifications, warnings, and sheltering in place or evacuation, and if the on-scene coordinators' best professional judgment supports the expectation of $PM_{2.5}$ less than 65 micrograms per cubic meter 1-hour average in populated areas.

The red zone radius takes into account that the risk of smoke exposure becomes greater close to the fire. In addition, the ALOFT model does not predict the behavior of smoke close to the fire before it lofts. The red zone downwind boundary also lies downwind of the expected in-situ burn operations site safety area. For example, a 1,000-foot radius around an in-situ burn of oil in a fire boom may be designated as the worker site safety zone by the site safety officer.

The Table 1 rules apply only in the following situations:

- In the vicinity of human populations
- For a burn of any size from a single source
- For simultaneous burns less than 100 yards apart


The Table 1 rules do not apply in the following situations:

- In unpopulated areas
- In-situ burns less than 3 miles upwind of terrain that rises more than 10 percent of the mixing layer height
- For simultaneous burns more than 100 yards apart

NOTE: This figure is taken directly from the In-Situ Burning Guidelines for Alaska, Revision 1, August 2008.

Figure 1: Zones for In Situ Burns on Populated Flat Land, and on Water Within 3 Miles of Shore

The dashed circle shows an example of a 1,000-ft radius site safety zone for workers, determined under a separate site safety plan.

NOTE: This form is taken directly from the *In-Situ Burning Guidelines for Alaska*, Revision 1, August 2008.

Appendix 1: Application and Burn Plan

Incident Name:		Date Pre	epared	Operati	onal Pe	eriod
Incident Location:				Date		Time
Incident Date:		Time	Start:			
Incident Time:		<u>Prepared</u>	End:			
Title of Applicant:	Δddr	ess:				
Affiliation:		ie:				
	ſ			тал		
PART 1	-	ase Status (cheo Continuous	•			
Potential Burn Location		Intermittent				
Site Description		One time or		.ed		
Latitude		One time of	ily, flow stopp	eu		
Longitude	If Co	ntinuous or Inte	rmittent, estim	ated Rate of R	elease:	
			ga	llons, or		
Type of Incident (check one):						
Grounding						
Transfer Operations		nated Surface A me of Applicatio				
Explosion Collision						
Blowout		and, identify/des • Vegetative co		(e.g., wetlands,	grassla	nds,
Other			orest, tundra, no	on-vegetated) ar the burn site (s	oo Anno	andiv 6)
Outci		Whether burn	n is on permafro	st	ee Appe	fildix 0)
Product Released (check one):			vegetation nea s/buildings nea			
North Slope Crude	Why	is mechanical re	· ·		r spill re	esponse
Cook Inlet Crude			•		·	·
Residual/Bunker Oil	Cons	sider the spill siz	e, forecasted	weather and tra	ajectorie	es,
Diesel #2	amo	unt of available o	equipment, tin	ne to deploy, ar	nd time	to
JP4	reco	/er				
Other						 -
	-	ou use mechan	·=	-		
Estimated Volume of Released Product:	in sit	u burning?				_ yes n
gallons, or BBL	Have	you evaluated	dispersants?		yes	no
	14/:11	/OU 1100 die	anto in assiss	otion with		
Estimated Volume of Product That May Potentially be Released:	1	ou use dispersa	ants in conjun	Cuon with	V/00	no
gallons, or	III SIL	u burning?			yes	no
BBL	Why	is in situ burninç	g preferred? _			

Appendix 1: APPLICATION AND BURN PLAN

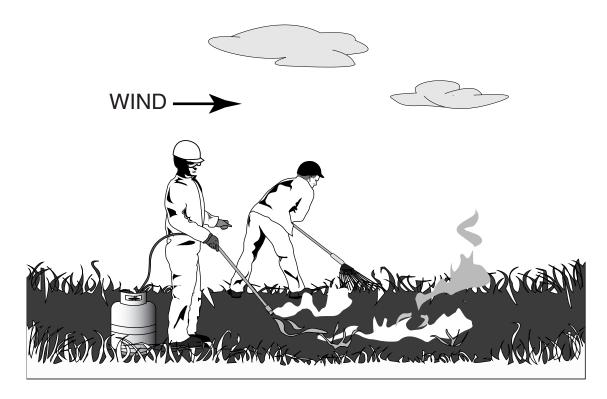
OPE SPILL	
STH SLOPE SPILL	3
- 8 A D	ľ.,
	6
TAX SALE	3
	拳
) alaska dean se	ø,
VAre on Gil	411

	_			<u> </u>	Guidelines for Alaska
PART	2				Tidal state ato'clock (check one):
Did sou	ırce burn?		yes	no	Slack tide
ls sour	ce still burning?		yes	no	Incoming (flood)
					Outgoing (ebb)
Is prod	uct easily emulsit	fied?	yes	no	✓ Attach a graph with tidal information for three tidal cycle
ls prod	uct already emul	sified? (che	ck one)		
is prou	No	silica: (one	ok one,		Dominant current (not drift):
	 _ Light emulsion	(0-20%)			Speed (knots)
	0 Moderate emul		%)		Direction (to)
	– _ Heavy emulsio	· ·	,		Current Speed (knots) Relative to the Containment
	Unknown	, ,			Boom
Estima	ted Percent Oil N	laturally Die	nersed and	Evaporated Wit	in Note: Current speed relative to the fire beam should be 75.1
	Hours:	-		•	in Note: Current speed relative to the fire boom should be .75 I or less to minimize entrainment.
	boxes and enter				or less to minimize entrainment.
Oncon	boxes and enter	Willia Valaco	111 1110 10110	wing table.	Sea State (check one):
		0			Calm
		Current Conditions	12-hour	24-hour	Choppy
		Conditions	Forecast	Forecast	Swell
	Clear				
	Partly cloudy				Waves (estimate height in feet)
	Overcast				Does your site safety plan cover this in situ burn plan?
	Rain				yes no
	Naiii				Men
	Snow				Will response workers be briefed on the site safety plan before burning? yes no
	Fog				belore burning:
	Wind Speed				Are the responders trained and equipped with safety gear?
	(kt)				yes no
	Wind Direction				✓ Attach an ICS 204 form, or similar document. On
	(from)				the following equipment you will use:
					Vessels
Percen	tage Ice Coveraç	ne (check or	ne).		Aircraft for ignition and aerial observation
i crocii	_ No ice present		10).		Lengths of fire boom
	_ <10%				Residue containment and removal equipment
	_ 11-30%				Fire fighting equipment
	_ _ 31-50%				
	51-100%				Ignition systems
					Burn promoters
					Communications systems
					Air/plume monitoring equipment.

Appendix 1: APPLICATION AND BURN PLAN In Situ Burning Guidelines for Alaska

	Part 3
Proposed Burn Date and Time	✓ Attach a chart with a distance scale. Show estimated spi trajectory and landfalls, with time. Show the location and distance
Describe how you intend to carry out the burn.	of your proposed burns relative to the following features:
	1. Source:
Check one:	Location
Ignition is away from source after containment and	Distance from Burn (miles)
movement of the oil to safe location (i.e., controlled	
burn).	Location
Ignition of uncontained slick(s) is at a safe distance from the source.	Location Distance from Burn (miles)
Ignition is at or near source without controls.	Distance nom built (miles)
0	Nearest Land (burns on water) or Near Flat Tarrain (burns on land):
How will you ignite the oil?	Non-Flat Terrain (burns on land): Location
	Distance from burn (miles)
Enter the volume of oil you expect to burn:	Distance nom pari (miles)
Fire Oil Volume Fire Duration	Nearby Populated Areas (i.e., one or more non-spill-related people
No. (BBL or Gal) (Hrs or Min)	present):
1	Location
2	Distance from Burn (miles)
3	
4	Location
5	Distance from Burn (miles)
Attach a list for more fires.	Location
Total	Distance from Burn (miles)
Vol.:	For Inland Burns consider
	Ignitable vegetation Structures/buildings
low many simultaneous burns are planned?	 Structures/buildings Areas with Fire Danger Rating of extreme, very high, or high
	 Nearest airport Alaska Class I Area (see Appendix 4)
/hat distance will separate simultaneous burns?	 Attach a drawing showing your mechanical recovery and in sit burning equipment configurations.
	C. For huma notantially importing populated areas provide an a
re you planning sequential or repeat (not simultaneous) burns?	6. For burns potentially impacting populated areas, provide an a monitoring plan in accordance with the SMART protocols.
yes no	
Estimated area of oil in uncontrolled burn	7. Identify whether any Class 1 Areas (Appendix 4) will b
(square feet)	impacted.
Describe your ability and procedures to extinguish the burn	f
necessary or directed to do so.	·

n-Situ Burning	Plan and	Application	Form (Pag	e 4 of 4)	TACTIC B-1A
----------------	----------	--------------------	-----------	-----------	-------------


Appendix 1: APPLICATION AND BURN PLAN In Situ Burning Guidelines for Alaska

	" Slow	THE R
5	1	TT
Ŷ.	Æ.	175
(
>	3.3	5 F. F.
2	alaska	
Q	alaska	clean sea
'<	00	

Part 4	
How do you plan to collect burned oil residue?	
How do you plan to store and dispose of burned oil residue?	
For inland burns, how do you plan to address post- burn erosion	if applicable?
Describe plan for eliminating risk (if any) of accidental (secondar	ry) fires (e.g., structures/buildings and/or vegetation).
Will the burn affect visibility at downwind airports within 20 miles	?
Signatures	
Signature of Applicant	
Printed name of Applicant	
Date and Time Submitted to Federal and State On-Scene Coord	dinators
Prepared by: ICS Position	n: Phone:
	52 Revision 1-August 2008

Revision 1-August 2008

A response worker rakes oiled vegetation with a metal rake so that grass stems are oriented more or less vertically. A second response worker uses a weed burner, which consists of a flame nozzle, hosing, and a propane tank. The weed burner is held just above the oiled vegetation until the vegetation is burned down to a stubble. Care is taken not to burn vegetation down to soil, which would damage the root system. Work is started on the upwind edge of the oiled area and proceeds downwind so that response workers are not exposed to smoke.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

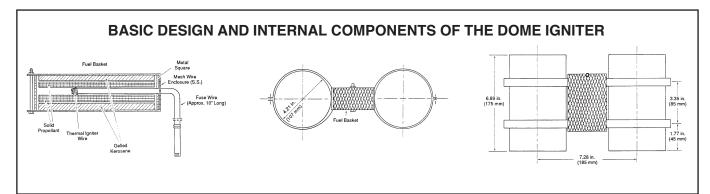
EQUIPMENT AND PERSONNEL

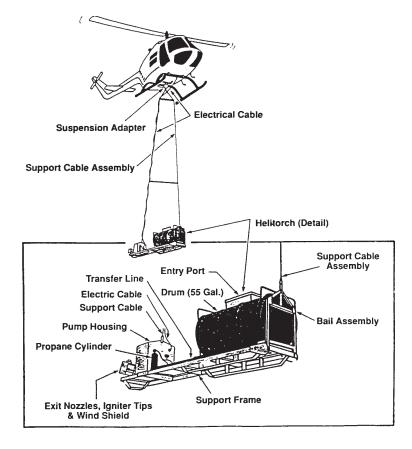
EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Weed Burner, with Propane Tank	All	Surface oil removal	1	1	1 hr	0.5 hr
Rake (metal)	All	Rake vegetation upright	<u>≥</u> 1	1	1 hr	0
Fire Extinguisher	All	Suppression of unwanted fires	<u>≥</u> 2	_	0.5 hr	0

TOTAL STAFF

2

SUPPORT


- Pickup trucks and four-wheelers transport personnel and equipment.
- Sorbent may be used in conjunction with the weed burners.


CAPACITIES

• One weed burner can cover approximately 50 sq. ft in an hour, depending on terrain and degree of oiling.

- Proper safety procedures must be followed, and the necessary personal protective equipment (PPE) must be used.
- Do not walk on oiled vegetation. Snowshoes can be used to protect unoiled tundra.
- Burning of oiled vegetation is conducted as a non-emergency project and has the objective of reducing re-oiling
 of adjacent areas. Burning proceeds downwind from its starting point. Care is taken to avoid contaminating
 unaffected areas. Burning is most effective immediately after the spill, before evaporation of volatile components.
- Take care to avoid secondary fires. If there is access to water, the oiled area and the surrounding vegetation can be saturated with water. Wet vegetation will still burn under the direct flame of a weed burner.
- Fire suppression must be on hand, with staff in direct control of it.
- Burned tundra can regenerate itself, as long as the root structure is left intact. Sedges and grasses recover more
 quickly than mosses and lichens, which do not have much of an underground structure. It is normally preferable
 to burn the oil in the tundra rather than to leave oiled vegetation. Tundra vegetation cannot survive under heavy
 oiling, but it can survive if the oil and vegetation are burned, leaving a healthy root structure.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.
- An ADEC open-burn permit is required.

Numerous methods are available for the ignition of floating oil. Hand-held pyrotechnic devices such as ACS's Dome igniters can be armed and tossed by hand from a helicopter or vessel. If such devices are unavailable, one can often make a simple though effective igniter on location using oil-soaked rags, sorbents, or even a roll of toilet paper. When it is unsafe to use such igniters, and particularly when a large, intense ignition area is needed, a Heli-torch may be used.

The Simplex Model 5400 Heli-torch owned by ACS is a helicopter-slung device for delivering measured amounts of burning gelled fuel to an oil slick for purposes of igniting the slick.

The Heli-torch can be used to ignite inaccessible oil pockets collected in quiet-water areas or on ice melt pools.

In-Situ Burning with Heli-Torch and Other Igniters (Page 2 of 2) TACTIC B-3

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heli-torch (55-gal)	ACS/KRU	Ignition	2		1 hr	
Helicopter with FAR Part 137 Approved Pilot	Alyeska	Sling-load Heli-torch	1	3	2 hr	
Hand-held Igniters	ACS, Northstar, Alpine	Ignition	≥6	2	1 hr	2 hr
Gelled Fuel	ACS	Firestarter Material	≥5 lb.	_	1 hr	
Batch Mixer (300 gal)	ACS/KRU	Mix gel	1	2	1 hr	
Fire Extinguisher	All	Suppress accidental fires	≥2	_	0.5 hr	

TOTAL STAFF

≥4

CAPACITIES

• Burning on water reduces the volume of a crude oil spill by 75% or more.

- Proper safety procedures must be followed, and the necessary personal protective equipment (PPE) must be used
- Follow all manufacturer's instructions carefully. Designated personnel on the surface and in the air maintain a constant watch of the fire and smoke plume, the condition of the boom, the speed and positions of the towing vessels, and the proximity of the burn operations to other vessels, oil slicks, the shoreline, etc. In addition, each vessel should maintain constant contact with the supervisor. The supervisor of the burn operation must be in direct radio contact with all elements of the burn team, including aircraft and the mixing/loading crew.
- It is critical that communications be available to ensure coordination between the burn operations supervisor and all elements of the response. All personnel involved in the operation must be in constant contact with the burn operations supervisor. The following communications are necessary for a burn on water:
 - Dedicated radio links and equipment with specific frequencies for air-to-air and air-to-ground communications
 - Dedicated radio links and equipment with specific frequencies for vessel-to-vessel and vessel-to-command communications
 - Repeater stations as appropriate for distant or blocked communications paths
 - Emergency manual signal (e.g., light or siren)
- Take care when filling, mixing, and dispensing raw or gelled fuel. Always connect a ground wire to an earth ground. Use a non-sparking pump in a well-ventilated area. When mixing by hand, use wooden or aluminum paddles. Have at least two 20-lb dry-chemical fire extinguishers in both the fuel mixing and Heli-torch filling areas. Personnel mixing and dispensing fuel must wear antistatic protective clothing.
- The charter company supplying the helicopter for the Heli-torch must be FAA-certified to sling-load petroleum. In addition, the pilot must have FAR Part 137 certification.
- Burning gelled fuel may sometimes fall off the Heli-torch while in transit to or from the burn site. Pilots should plan their flight path to minimize the risk of starting unwanted fires.
- · Certain environmental limitations restrict the feasibility of in-situ burning. Optimal environmental conditions are:
 - Winds less than 20 kt
- Waves less than 2 to 3 ft
- Currents less than 3/4 kt relative velocity between boom and water
- The following oil thicknesses are required to support combustion:
 - 2 to 3 mm (0.08 to 0.12 inch) for fresh crude oil
 - 3 to 5 mm (0.12 to 0.2 inch) for diesel and weathered crude
 - 5 to 10 mm (0.2 to 0.4 inch) for emulsions and Bunker C
- Emulsification can affect ignitability. Most oils are readily combustible if water content is less than 25%. For water contents greater than 25% it may be necessary to apply an emulsion breaker to obtain ignition.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

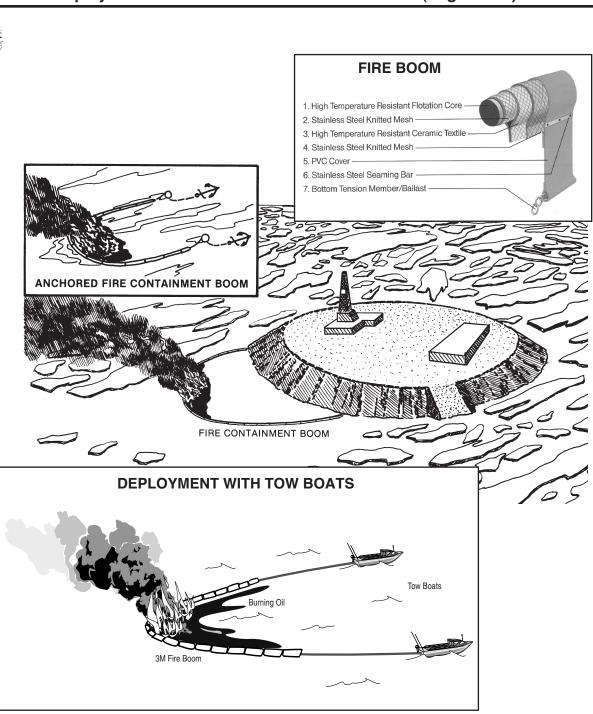
EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME	
Fire Boom	ACS, KRU, PBW, Endicott	Contain oil for burning on water	≥500 ft	4 to unload conex	1 hr		
Work Boat	All	Tow boom	2 per configuration	2 per boat	1 hr	O har	
Tow Line (with bridles and anchors)	All	Tow boom	500 to 800 ft per towboat	_	_	2 hr	
Hand-held Igniters	ACS, Northstar, Alpine	Ignite oil	10 per platform	1	1 hr		

TOTAL STAFF FOR SETUP
TOTAL STAFF TO SUSTAIN OPERATIONS

7 (including personnel to pick up burn residue)

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Work Boat	All	Recovery and storage of burn residue	1 per configuration	3 per boat	2 hr	1 hr
Fire Extinguishers	All	Fire suppression	≥2 per configuration	_	0.5 hr	
Fire Boom Repair Kit	ACS	Boom repair	2	_		


CAPACITIES

- Burning on water reduces the volume of a crude oil spill by 75% or more.
- For layers of oil 0.5 inch thick or greater, the removal rate is 4.2 gal of oil per hour for every sq. ft of burning oil.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- Proper safety procedures must be followed, and the necessary personal protective equipment (PPE) must be used.
- Follow all manufacturer's instructions carefully. Designated personnel on the surface and in the air maintain a
 constant watch of the fire and smoke plume, the condition of the boom, the speed and positions of the towing
 vessels, and the proximity of the burn operations to other vessels, oil slicks, the shoreline, etc. In addition, each
 vessel should maintain constant contact with the supervisor. The supervisor of the burn operation must be in
 direct radio contact with all elements of the burn team, including aircraft and vessels.
- It is critical that communications be available to ensure coordination between the burn operation supervisor and all elements of the response. All personnel involved in the operation must be in constant contact with the burning operations supervisor.

(Continued on next page)

Fire containment boom can be deployed in a stationary mode either anchored to a shore or on the water. In addition, it can be towed like a standard containment boom in a U-configuration to collect oil on water and concentrate it for burning within the boom.

To use the full holding capacity of the boom, oil should fill the lower one-third of the boom's apex while the boom is being towed. During a burn, the oiled area may be expanded by slowing down. This increases the size of the burn and the oil elimination rate.

In-situ burning, without boom, may be used in ice conditions. The ice would act as the containment mechanism.

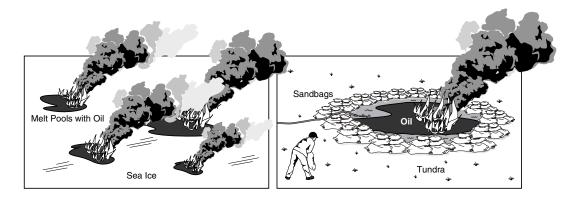
DEPLOYMENT CONSIDERATIONS AND LIMITATIONS (CONT'D)

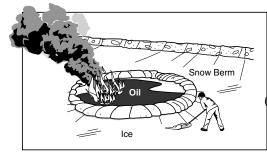
- The following communications are necessary for a burn on water:
 - Dedicated radio links and equipment with specific frequencies for air-to-air and air-to-ground communications
 - Dedicated radio links and equipment with specific frequencies for vessel-to-vessel and vessel-to-command communications
 - Repeater stations as appropriate for distant or blocked communications paths
 - Emergency manual signal (e.g., light or siren)
- The following oil thicknesses are required to support combustion:
 - 2 to 3 mm (0.08 to 0.12 inch) for fresh crude oil
 - 3 to 5 mm (0.12 to 0.2 inch) for diesel and weathered crude
 - 5 to 10 mm (0.2 to 0.4 inch) for emulsions and Bunker C
- Chemical herders may be used, if approved by the Unified Command, to thicken oil and enhance in-situ burning.
- · Certain environmental limitations restrict the feasibility of in-situ burning. Optimal environmental conditions are:
 - Winds less than 20 kt
 - Waves less than 2 to 3 ft
 - Currents less than 3/4 kt relative velocity between boom and water
- · Note that Fire Boom is very heavy, and proper lifting techniques must be used during deployment.
- · Towing vessels should be positioned to avoid any direct contact with floating oil that could accidentally be ignited.
- Keep the operation out of the smoke plume.
- · One towing vessel should be designated as the lead vessel for determining course and speed.
- Tow at speeds of 1/2 to 3/4 kt or less and avoid sudden speed changes.
- · All personnel and equipment should remain at least 2 to 3 fire diameters away from the pool of burning oil.
- As conditions allow, the rate at which oil can be eliminated may be increased by a factor of 2 to 3 by slowing the boom-towing vessels and permitting the contained burn to spread forward within the boom. Oil should not be allowed to spread within 50 ft or less of the leading (upstream) ends of the boom.
- Boom-towing personnel should be familiar with procedures to terminate the burn.
- Beware of flashback! After the fire appears to be extinguished, unexpected re-ignition can occur.
- As the burn begins to die down, keep the tow at just enough forward speed to let the remaining oil burn as completely as possible.
- Select size and length of boom based on expected wind and sea conditions, staging and logistics constraints, and the volume of oil to be burned.
- · Use conventional boom-deployment practices to avoid snags, twists, and fouling with other equipment.
- Select tow line size based on a safety factor of 7. Use long tow lines for each tow vessel (typically 500 to 800 ft) to reduce oil entrainment from prop wash, to position tow vessels safely away from the burn, and to provide additional reaction time in an emergency.
- As necessary, increase oil encounter rate by connecting sections of conventional boom to the leading ends of the fire containment boom. (Maintain a gap ratio of 0.3).

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS (CONT'D)

(Continued on next page)

LE TO SEE SPILL REING


Deployment and Use of Fire Containment Boom (Page 4 of 4) TACTIC B-4


- Be careful if burning while towing to avoid smoke blowing directly into the vessels.
- Ensure that spotter aircraft are available to direct the boom-towing vessels to the heaviest oil concentration or the highest-priority slick.
- If a U-configuration with collected oil is to be moved before ignition, don't locate it directly upstream or downstream of the source or other ignitable slicks. About 1/4 to 1/2 mile side-wind is adequate.
- Inspect boom after each burn before using again; repair or replace damaged sections.
- Below are boom towing limitations for airboats during overflood conditions in the nearshore Beaufort Sea (based on 2005 ACS seasonal recovery testing):

ICE CONDITIONS	FIRE BOOM (20 lb/linear ft)	FIRE BOOM (7 lb/linear ft)	FIRE BOOM (6 lb/linear ft)	DELTA BOOM
Groundfast or Shorefast Ice (with overflood)	100 ft	300 ft	350 ft	750 ft
Broken Ice: Large, Dense, First-Year, Afloat	100 ft	300 ft	350 ft	750 ft
Broken Ice: Smaller, Less Dense, Rotted	200 ft	600 ft	700 ft	1,000 ft

• In extreme shallow water conditions, sheet metal may be used in lieu of boom in the apex. Use 36 pieces of metal and 37 stakes per 100 ft.

Oil can be burned on any solid surface provided the oil is thick enough to support combustion. This includes tundra, ice, snow, or gravel.

In-situ burning on land should be considered only if there is a layer of ice covering underlying vegetation to protect it from heat damage. If this is the case, the oil should be pooled into one area and a buffer zone created around this area. Pooling of oil can be accomplished by digging a pit for oil to flow into.

Oil on land can be ignited with torches, igniters, propane weed burners, or a Heli-torch.

If the spill is on tundra, some sort of dike should be built around the oil using sandbags. The diked area should never cover more than 4,000 square feet. Once the dike is in place, flood the diked area with water until the tundra root mass is covered with one-half to one inch of water.

In the case of oil initially spilled on the surface and mixed with snow, burning of oiled snow piles can be successfully achieved even in midwinter conditions. Depending on the initial oil spill volume per unit area of ice, the technique of plowing oiled snow into concentrated piles may be the only way of achieving successful ignition and burning. In many cases, waiting for the snow to melt could result in thin oil films incapable of supporting combustion and spread over a large ice area.

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heli-torch (55-gal)	ACS/KRU	Ignition	2		1 hr	
Helicopter with FAR Part 137 Approved Pilot	Alyeska	Sling-load Heli-torch	1	3	2 hr	
Gelled Fuel	ACS	Firestarter Material	≥5 lb.	_	1 hr	
Batch Mixer (300 gal)	ACS/KRU	Mix gel	1	2	1 hr	2 hr
Sand Bags	ACS, GPB, KRU, Alpine	Containment	≥100	>6 for setup* 2 to maintain	2 hr	
Propane Weed Burner	All	Ignition	2	2	1 hr	1 hr
Hand-held Igniters	ACS, Northstar, Alpine	Ignition	≥6	1	1 hr	

^{*}Number of personnel depends on number of sandbags needed.

TOTAL STAFF ≥3

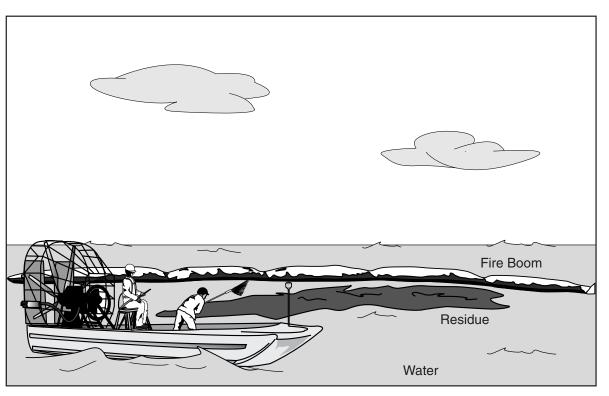
at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use

NOTE: "Base Location" is storage location (may change seasonally): "Mobe Time" is time to get it out of storage, prepare it for

SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Front-End Loader	All	Unload sandbags	1	1	1 hr	0.5 hr
Water Truck	All	Flooding	1	2	2 hr	0.5 hr
Light Plant	All	Illumination	<u>≥</u> 1	2 for initial setup and 1 to check and fuel occasionally	1 hr	0.5 hr
Fire Extinguisher	All	Suppress unwanted fires	<u>≥</u> 2	_	0.5 hr	_
ATV	All	Transfer	3	3	1 hr	0.5 hr
Rolligon	Peak	Transportation to site	1	1	6 hr	2 hrs
Sno-Cat	KRU, APSC	Transportation to site	1	1	1 hr	0.5 hr
Sno-Cat with Blade	Sno-Cat with Blade KRU, APSC Move snow		1	1	1 hr	0.5 hr
Amphibious Personnel Carrier (e.g., Haaglund)	AIC	Transportation to site	1	1	2 hr	0.5 hr


^{*}Marsh buggies may be used in rotting ice conditions.

CAPACITIES

- For layers of oil 0.5 inch thick or greater, the removal rate is 4.2 gal of oil per hour for every sq. ft of burning oil.
- A backhoe on a tracked, amphibious marsh buggy is capable of gathering snow at the rate of 9 cubic yards per minute and of transiting natural sea ice at 1.2 miles per hour.
- A Tucker Sno-Cat with blade is capable of moving snow into berms at the rate of 2 acres per day, assuming 10 hours of operation in each of two, 12-hour shifts per day at 70 sq. ft. per minute.

- Proper safety procedures must be followed, and the necessary personal protective equipment (PPE) must be
 used. Designated personnel on the surface and in the air should maintain a constant watch of the fire and smoke
 plume.
- The following oil thicknesses are required to support combustion:
 - 2 to 3 mm (0.08 to 0.12 inch) for fresh crude oil
- 3 to 5 mm (0.12 to 0.2 inch) for diesel and weathered crude
- 5 to 10 mm (0.2 to 0.4 inch) for emulsions and Bunker C
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

The type and amount of residue from an in-situ burn of oil on water depend on the starting oil type and condition, as well as the way in which the oil is contained and/or herded throughout the burn. If wind or currents are available to push burning oil against a barrier (boom, ice, steel structure, etc.), adequate combustion thicknesses will be maintained for a much more efficient burn. The residue may be an inch or more thick.

The residue may continue to pile up on itself and reach an average thickness of several inches. Most burns result in taffy-like layers of weathered, viscous material that is relatively buoyant. Some residues, however, may quickly become negatively or neutrally buoyant because of combustion and/or sediment uptake.

If the residue is sufficiently buoyant, it may be possible to leave it in the apex of the U-boom configuration. By combining the residue with newly collected oil, a major portion of the residue can be eliminated during subsequent burns.

If the burn residue remains buoyant, and it is practical to recover it before collecting and burning additional oil, the residue can be released to secondary collection booms or nets. Whether recovered from secondary booms or the fire containment boom, the burn residue can normally be picked up with large strainers or handtools, with viscous-oil sorbents, or with standard viscous-oil skimmers.

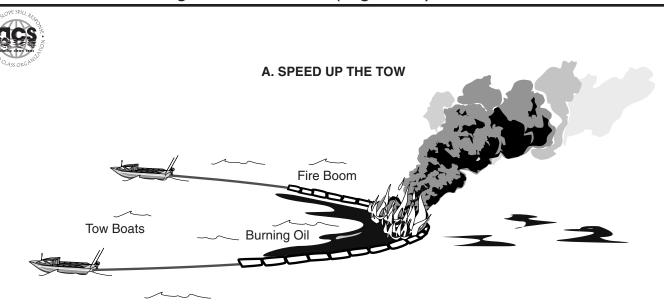
If not recovered, burn residue will normally break up and be dispersed as highly weathered tar balls.

Residue from burning oil on ice will be manually recovered from the surface of the ice.

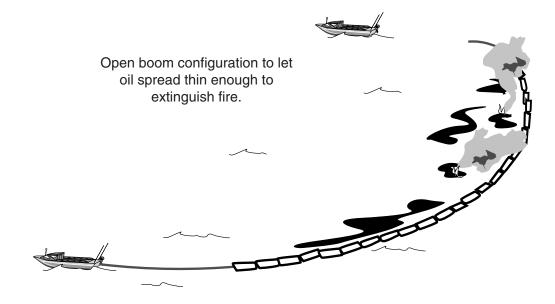
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Handtools	All	Recovery	Varies	Varies	1 hr	
Large Strainers	All	Recovery	Varies	Varies	1 hr	
Viscous-Oil Sorbent	All	Recovery	Varies	Varies	1 hr	1 hr
Viscous-Oil Skimmers	All	Recovery	1	2	2 hr	1 111
Work Boat	All	Recovery	≥1	3	2 hr	
Fire Extinguisher	All	Suppress unwanted fires	≥2	_	0.5 hr	


TOTAL STAFF

3


CAPACITIES

- Burning on water reduces the volume of a crude oil spill by 75% or more.
- For layers of oil 0.5 inch thick or greater, the removal rate is 4.2 gal of oil per hour for every sq. ft of burning oil.

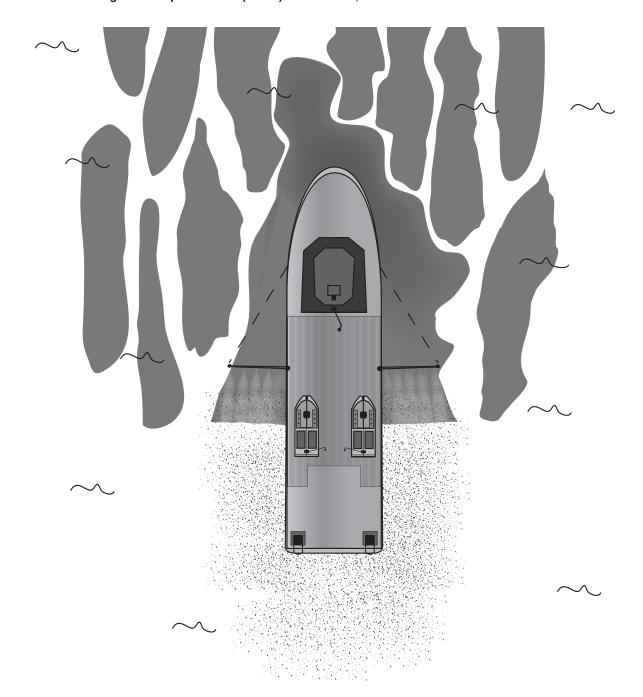
- Proper safety procedures must be followed, and the necessary personal protective equipment (PPE) must be used.
- Beware of flashback! After the fire appears to be extinguished, unexpected re-ignition can occur. Wait until the residue cools before approaching.
- Shortly after it cools, the burn residue becomes viscous and continues to cool to a thick, tarry substance best removed with handtools or nets.
- Initially, the residue floats, but eventually (several hours to several days), it may sink.
- Containers such as drums or plastic bags can be used for temporary storage.
- Handle the residue in the same manner as recovered oil. Testing is necessary to ensure that the residue is not hazardous. A State of Alaska permit is needed for final disposal.

B. RELEASE THE BOOM

It may be necessary to terminate in-situ burning for a variety of reasons:

- Personnel safety
- Adverse weather
- Darkness, especially for aircraft (vessels may still be able to operate with limited light)
- Downwind effects of smoke plume
- Completion of burning

Boom-towing personnel should be familiar with procedures to terminate the burn.


- The oil can be released from the boom and allowed to spread until it is too thin to burn (The potential spread area is possibly as large as ten contained fire diameters).
- The tow speed can be quickly increased to force the oil under the boom. This is less likely to involve downstream combustion; however, anticipate the potential for a tenfold increase in burn diameter.

CASSORCAMINE

- Proper safety procedures must be followed, and the necessary personal protective equipment (PPE) must be used.
- Ensure released burning oil will not start unwanted fires.
- Ensure good communications between both vessels prior to initiating extinguishment procedure.

NOTE: Permission to use dispersants MUST be requested in advance, and approval received, in accordance with Alaska Regional Response Team (ARRT) Unified Plan, Annex F.

Chemical dispersants, once authorized for use, may be applied from spray arms off one or both sides of a vessel. Large vessels offer unique advantages over aerial systems involving the potential for large payloads of dispersant, continuous spraying for long periods, higher dosages (avoiding the need for multiple passes), and relatively simple, on-site application systems. Working with spotter aircraft, the vessel can be guided to the heaviest concentrations of oil where it can apply dispersants over swaths of typically 60 to 100 feet, depending upon the beam of the spray vessel and the length of the spray arms. With application speeds of approximately 3 to 8 knots, dispersants can be sprayed undiluted (neat) or diluted. Neat application, yielding higher efficiencies, is usually preferred.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

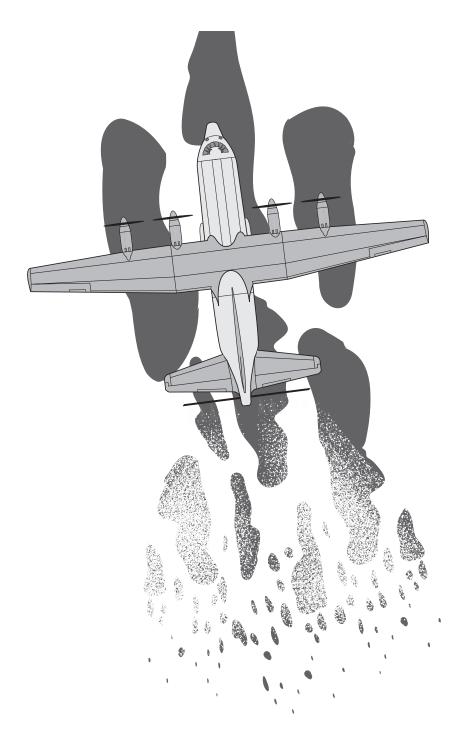
Spray systems are designed and positioned on the vessel to give slightly overlapping spray patterns at the surface, yielding droplet-sizes that are typically 250 to 750 microns (1/4 to 3/4 mm), and making initial contact directly with the oil, thereby avoiding any wasteful treatment of oil that has been mixed into the water column by the vessel's bow wave and wake. With dosages of typically 5 to 15 gallons of dispersant per acre, pump rates are controlled to operate within that range based on the vessel's spray swath and speed. NOAA's Open Water Oil Identification Job Aid (characterizing oil slicks at various thicknesses) and its Dispersant Mission Planner 2 are helpful in determining appropriate slicks for chemical treatment and system operating parameters for both vessel and aerial spray systems.

EQUIPMENT AND PERSONNEL

ACS does not presently possess the equipment to support this tactic.

SUPPORT

- An aircraft, either fixed-wing or helicopter with a trained observer, is important in guiding spray vessels to the heaviest oil concentrations as well as the leading edges of slicks that could threaten sensitive resources.
- In the event of a fixed point-source spill (e.g., a blowout or sub-sea pipeline rupture), the need for aerial support may be reduced by spraying directly downstream of the source.
- Operations will normally involve strong support from the USCG and/or trained contractors to monitor and document the results of dispersant use following Special Monitoring of Applied Response Technologies (SMART) protocols.


CAPACITIES

- With good visibility (especially with a fixed, continuous spill source), the equipment has the potential to operate 24 hours per day.
- For each 1,000 gallons of dispersant carried onboard, the vessel could treat as much as 20,000 gallons of oil (based on a dispersant-to-oil ratio of 1:20).
- Typical areal coverage rates for vessels with swaths of 60 to 100 feet, spraying at 5 knots, run between 0.7 and 1.2 acres/min. (i.e., ~0.06 to 0.11 mi²/hr).
- Reference NOAA's Dispersant Mission Planner to determine incident-specific operating and application parameters.

- Spray arms provide relatively low areal coverage rates.
- It can be difficult to observe oil on the water surface from the vessel's wheelhouse.

NOTE: Permission to use dispersants MUST be requested in advance, and approval received, in accordance with Alaska Regional Response Team (ARRT) Unified Plan, Annex F.

The aerial application of dispersants can be conducted as a primary response option when wind/sea conditions preclude the safe and effective use of booms for containment and recovery or burning operations. Dispersants may also be used strategically to treat oil that has escaped recovery and/or burning operations.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

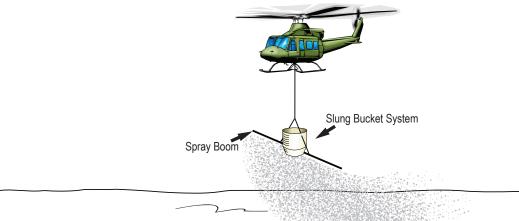
Once authorized for use, dispersants may be applied from a large fixed-wing aircraft, with the important advantage being speed of application with a relatively wide swath. Dependent upon the aircraft type and dispersant spray system storage capacity, a C-130 Hercules may be flown with up to 5,000 gallons per sortie and can operate effectively with a 100 ft altitude and application speeds of typically 145 to 150 knots. Since higher speeds and altitudes can be used for transit to the spill site and observation of the spill, the aircraft provides an opportunity to select the optimum direction and pattern for delivery of the dispersant. The large payload of this system, combined with its long-range capabilities and high areal coverage rates, typically many tens of acres/minute, make the Hercules one of the most effective options for treating large areas and volumes of oil far from shore (100 miles or more).

EQUIPMENT AND PERSONNEL

ACS does not presently possess the equipment to support this tactic.

SUPPORT

- Whenever possible, a second spotter aircraft (fixed-wing or helicopter) would be used to help align the Hercules with each pass over the oil, giving "start" and "stop" instructions for spraying as the aircraft enters and leaves the desired spray zone. The spotter aircraft can provide important information to the pilot of the spray plane regarding wind effects on targeting of the dispersant, proper overlap with previous spray paths, effectiveness of dispersion, and any other adjustments that may be needed for the flight path.
- Flight crews manning aerial dispersant C-130 and spotter planes should be trained to work in tandem.
- The spotter aircraft can also be of help to those conducting the Special Monitoring of Applied Response Technologies (SMART) protocols by directing those boats to the regions where dispersants had been applied.
- Additional support is required back at the staging location for refueling of the aircraft and for the rapid loading of dispersant between sorties.
- Reloading dispersant pack requires two staff in PPE.


CAPACITIES

- With good visibility there is the potential for dispersant application 24 hours per day during periods of extended daylight in the summer months.
- See NOAA's Dispersant Mission Planner to determine incident-specific operating and application parameters.

- Distance of sortie from staging location to application site.
- High wind and rough sea conditions may degrade application effedtiveness.
- Oil type, thickness, emulsification, and weather are other factors determining effectiveness.
- · SMART protocols require a test application to evaluate effectiveness.

NOTE: Permission to use dispersants MUST be requested in advance, and approval received, in accordance with Alaska Regional Response Team (ARRT) Unified Plan, Annex F.

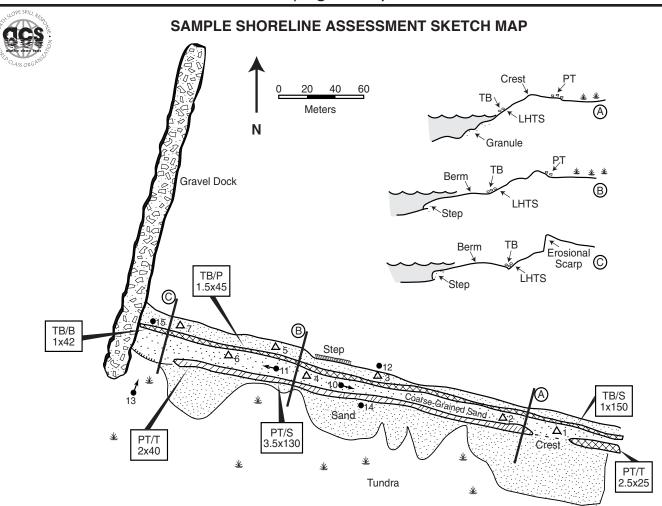
Dispersant application from a "bucket" slung beneath a helicopter provides the capability for "surgical" spraying over oil that has escaped containment during recovery or burning operations. Helicopters can also access relatively large areas (typically 10 acres/min or more), maneuver well to hit the highest concentrations of oil, and make quick altitude adjustments locating oil from 500 feet or more, and then dropping to a 50-ft altitude or less for spraying.

Helicopter spray buckets will vary in size from approximately 150 to 300 gallons of dispersant. For example, a 240-gallon bucket can spray with a swath width of 75 to 100 feet at speeds of typically 50 to 85 knots. Depending upon the payload/range capabilities of the helicopter, such spray systems are somewhat restricted to waters that are typically less than 20 n mi from shore or offshore staging.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

ACS does not presently possess the equipment to support this tactic.


SUPPORT

• A spotter aircraft (fixed-wing or helicopter), if available, can greatly enhance the operation by locating slicks, guiding the spray helicopter to those regions, and documenting the effectiveness of dispersion.

CAPACITIES

- With good visibility there is the potential for dispersant application 24 hours a day during periods of extended daylight in the summer months.
- Depending upon the distance from shore and the availability of backup dispersant supplies and ground support, a helicopter spray system could deliver well over a dozen sorties in a single day. If 200 gallons of dispersant are sprayed during each of 12 sorties, the system could treat nearly 1,200 bbls of oil (assuming a dispersant-to-oil ratio of 1:20).
- Each staging location may store at least 2,000 gallons of dispersant for each helo-bucket system to be serviced for each day of operation.
- Reference NOAA's Dispersant Mission Planner to determine incident-specific operating and application parameters.
- AES spray bucket has a capacity of 200 gallons.

- Due to the limited range of most small helicopters and the added risks of flying over water, helicopter spraying operations should be conducted from staging locations relatively close to the spill.
- Remote locations, far offshore, would need to be supported by vessels or a platform with heli-pad, refueling facilities and dispersant for reloading the bucket between sorties.

PURPOSE OF SHORELINE ASSESSMENT

If a spill impacts the shoreline, it is important to have a clear and accurate understanding of the nature and extent of the oiling, particularly before cleanup commences. The Shoreline Cleanup Assessment Team (SCAT) approach is used to collect data on shoreline oiling conditions and support decision-making for cleanup. The objectives are to:

- Systematically collect data on shoreline oiling conditions
- Identify and describe human use, ecological and cultural resource effects and the constraints that they impose
 on cleanup operations
- · Cross-check pre-existing information on environmental sensitivities or clarify observations from aerial surveys
- · Identify any constraints that may limit operations
- Provide decision support for onshore response operations

Priorities for shoreline assessment surveys may be determined using information from aerial surveys and pre-existing sensitivity atlases and databases. Priority setting criteria include:

- Degree of oiling
- · Environmental resources
- Projected tide and wind conditions
- Available transportation and logistics

Information collected from the SCAT process is the basis for development of the shoreline treatment or cleanup operation.

SCAT may involve:

- An aerial reconnaissance survey to identify areas of current or potential impact
- An aerial video survey to document shoreline oil conditions and geomorphology and to establish locations and priorities for ground surveys
- A ground survey to document shoreline oil conditions, geology, ecology, cultural resources, and identify constraints

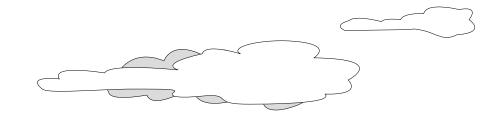
SHORELINE SEGMENTATION

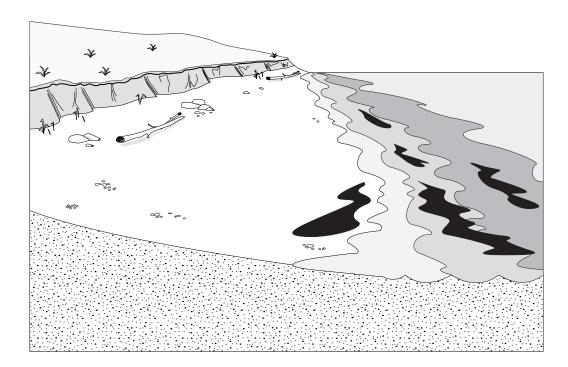
Shoreline segmentation provides a systematic and uniform framework for documentation, planning and response consideration.

- The shoreline is divided into working units, called "segments", within which the shoreline character is relatively homogeneous in terms of physical features and sediment type.
- Each segment is given a unique location identifier and is surveyed.
- Segment boundaries can be either prominent geological features (headlands, streams, etc.), changes in shore/substrate types, or changes in oil conditions.
- Segment lengths are small enough to obtain adequate resolution and detail on the distribution of oil, but not so small that too much data is generated. Most segments in oiled areas would be in the range of 0.2 to 2.0
- Segments are identified on an alphanumeric scheme with an alphabetical prefix, keyed to a geographic place name (e.g., MP = Milne Point), followed by a number based on an alongshore sequence (MP-4).

Segmentation for the North Slope region has already been accomplished as part of the pre-planning exercise (see the ACS Technical Manual Map Atlas). It should be reviewed for suitability at the time of a spill, since the segment boundaries may need to be adapted to existing spill conditions. Predesignated segments can be subdivided if oiling conditions vary significantly within the segment; segment subdivision can be identified by a suffix (e.g., MP-4-A).

SCAT SURVEY TEAM AND RESPONSIBILITIES


Primary team members for the surveys and their responsibilities are outlined below. Assignments can be modified according to survey objectives and the composition of the team. Government or landowner representatives will participate and may assist in the data collection.


TEAM MEMBER	RESPONSIBILITIES
Oil Spill Geomorphologist	 Logistical direction and management of the survey team Review of existing data, maps and photos Reviewing and verifying existing shoreline segmentation and adapting it as necessary Photographic/video documentation Collection and documentation of any sediment/oil samples that may be required Consultation with the spill response operations representative and other team members concerning appropriate response options and constraints for a given site Post-survey mapping, documentation, and categorization of the severity of oiling based on on-site observations
Ecologist	 Cross-checking information from existing sensitivity atlases and databases with actual conditions Describing the abundance and location of different coastal ecosystems in the segment Tabulating information on the general character and health of indicator species along the shoreline Providing information on nearshore, shallow areas and wildlife observations Recommending ecological constraints on operations or cleanup activities Providing photo documentation and a sketch map of the surveyed area
Archaeologist	 Evaluate the foreshore areas to identify likely site locations Update known site by recording additional information on site location, size, depth, presence of surface features and conditions Document newly discovered sites Complete forms as required (Cultural Resource Evaluation Form and Human Use Summary Form) Apply constrains as necessary on operations or cleanup activities Provide photo documentation and draw a sketch map

Detailed information on the SCAT process is provided in the two following documents:

- Owens Coastal Consultants. (2004, 2014). North Slope Shoreline Oil Spill Countermeasures Manual. Prepared for Alaska Clean Seas, Prudhoe Bay, Alaska.
- Michel, J. and I. Byron. 1997. Shoreline Assessment Manual. Hazardous Materials Response and Assessment Division, National Ocean Service, National Oceanic and Atmospheric Administration, Report No. HAZMAT 97-4.

Natural recovery allows the shoreline to recover without intervention. This option requires field observations of the oiling conditions and of the resources at risk to assess the effects of allowing the oil to weather naturally. In some cases, monitoring the location may be necessary to ensure that the assessment is correct.

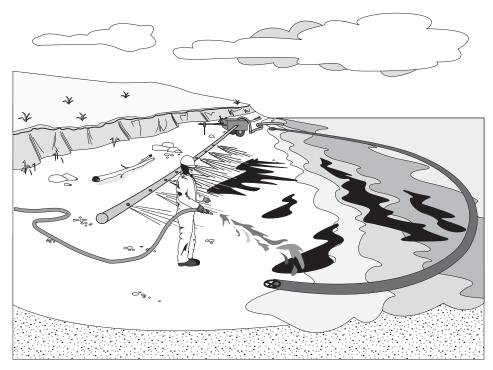
Natural recovery can be applicable on any spill incident and for any shoreline type, but requires a decision that:

- To treat or clean stranded oil may cause more damage than leaving the site to recovery naturally, or
- Response techniques cannot accelerate natural recovery, or
- Safety considerations could place response personnel in danger either from the oil (itself) or from environmental conditions (weather, access, etc.).

Other factors include an analysis of the:

- Resources at risk,
- The type and amount of oil, and
- The location of the site.

For example, a decision could be made that a small amount of nonpersistent oil on an exposed shore at a remote location may weather and degrade without any active or potential future threat to the local environment.



- Unified Command approval is required for any shoreline cleanup tactic.
- Natural recovery of oiled shorelines is more applicable for:
 - Small than large amounts of oil,
 - Nonpersistent than persistent oil, and
 - Exposed shorelines than sheltered or low wave-energy environments.
- Natural recovery may not be appropriate if important ecological resources or human activities/resources are threatened.
- Natural recovery should always be considered as the preferred option, particularly for small amounts of oil. The trade-off analysis involves (1) natural recovery, (2) the possible benefits of a response to accelerate recovery, and (3) any possible delays to recovery that may be caused by response activities.

TACTIC SH-3 Shoreline Cleanup Using Flooding and Flushing (Page 1 of 2)

Physical removal involves a variety of washing or flushing tactics to move oil from the shore zone to a location for collection and removal. The variables that distinguish each tactic are pressure and temperature. For all these tactics, booms or other methods of trapping and containment are used to collect the oil for removal.

FLOODING ("DELUGE")

A high-volume (50 to 250 gpm), low-pressure supply of seawater at ambient temperature is pumped using large-diameter (3- to 6-inch) pipe and/or hose ("header") to the upper section of the oiled area. Water can be pumped either directly from a hose without a nozzle, or the pipe or hose can be perforated (0.1- to 0.2-inch holes) at intervals and placed along the shoreline parallel to the water line. Output pressures are less than 20 psi.

The high volume of water floods the surface area (in the case of impermeable man-made shorelines) or the beach sediments. Mobile or non-sticky oil is transported with the water as it flows downslope. Flooding can be used in combination with trenches or sumps and vacuum systems to float and collect oil for recovery.

LOW-PRESSURE, COLD-WATER FLUSHING

Hand-operated or remote-controlled hoses use ambient temperature seawater to flush, wash, and herd oil to a collection point for removal. Output pressures are controlled, usually by a nozzle, and are low (less than 50 psi). The tactic can be used with flooding to prevent redeposition of the oil.

LOW-PRESSURE, WARM/HOT-WATER FLUSHING

Hand-operated or remote-controlled hoses use heated (80°F to 212°F) seawater to flush, wash, and herd oil to a collection point. This tactic is used primarily to dislodge and flush oil that cannot be washed using low-pressure, ambient-temperature water. Output pressures are controlled, usually by a nozzle, and are low (less than 50 psi). This tactic can be used with flooding to prevent redeposition of the oil.

HIGH-PRESSURE, COLD-WATER FLUSHING

Hand-operated or remote-controlled hoses use ambient temperature seawater jets to flush, wash, and herd oil to a collection point. The higher water pressures dislodge and flush oil that cannot be washed or mobilized using lower pressure, ambient temperature water. Output pressures are controlled and are in the range of 100 psi or greater. On sloping outcrops or structures this technique can be used with flooding to prevent redeposition of the oil.

HIGH-PRESSURE, WARM/HOT-WATER FLUSHING

Hand-operated or remote-controlled hoses use high-pressure, heated (80°F to 212°F) seawater to flush, wash, and herd oil to a collection point. Output pressures may be fixed or controlled by a nozzle and are in the range of 100 psi or greater. The higher pressure and warm water dislodge and flush oil that cannot be washed by lower pressure and temperature water. On sloping structures, this technique can be used with flooding or low-pressure flushing to prevent redeposition of the oil.

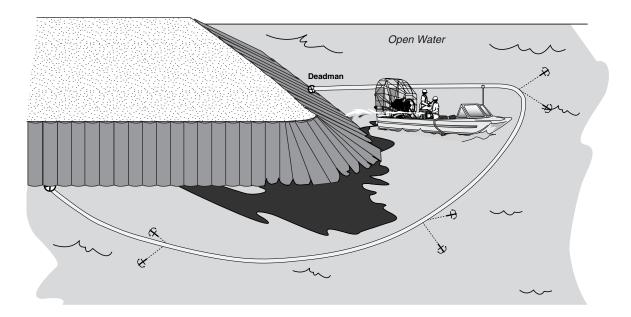
Shoreline Cleanup Using Flooding and Flushing (Page 2 of 2) TACTIC SH-3

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Trash Pump (2-inch)	All	Deluge	<u>≥</u> 1	2	1 hr	
Suction Hose (2-inch)	All	Suction	≥20 ft	2 for setup	2 hr	
Discharge Hose (3-inch)	All	Deluge	≥50 ft	_	2 hr	0 6*
Perforated Header Hose	ACS, KRU	Deluge	≥100 ft	2 for setup	1 hr	2 hr
Water Heating Plant*	PBE	Heat water	_	_	_	
Water Truck*	All	Transport heated water	1	1	2 hr	

TOTAL STAFF


2 (3 if water truck is used)

- See tactics on booming and skimming for additional equipment and personnel needs for recovery of free oil generated by these tactics.
- Ambient sea water for flooding and flushing operations may also be supplied via pumps located aboard off-shore response vessels.

- Unified Command approval is required for any shoreline cleanup tactic. Additional permits may be required for beach or upland access, and to anchor boom to the beach (e.g., ADF&G, ADNR, SHPO, etc.).
- Washing oil and/or sediments downslope to lower intertidal zones that may have plant or animal communities should be avoided, particularly if these were not initially oiled. This can be avoided by working at only mid-tide or higher water levels so that these communities are below the water line. This oil and oiled sediment should be contained and collected as part of the treatment process. If it cannot be recovered, the technique only disperses oil rather than cleans the shoreline.
- Flooding is effective on most shoreline types, but it may have limited application only on sand or mud flats and on steep man-made solid structures. Generally, flooding is not a very intrusive technique.
- Low-pressure, cold-water flushing is effective on most impermeable shoreline types and on some permeable shores or marshes. It may have limited application only on sand beaches, sand-gravel beaches, or sand flats, and is probably not appropriate on mud flats. Generally, this is not an intrusive technique and leaves most organisms in place.
- Low-pressure, warm/hot water flushing is effective on most impermeable shoreline types, but may have limited
 application only on sand beaches, sand-gravel beaches, and sand flats and is probably not appropriate on mud
 flats. Generally, this is not a highly intrusive technique if used carefully in conjunction with high-volume flooding,
 which minimizes the potential adverse effects on shoreline organisms of using heated water.
- The effectiveness of flooding and low-pressure flushing decreases as oil viscosity increases and as depth of penetration increases on cobble beaches.
- *High-pressure, cold-water flushing* has limited application only for oiled bedrock or solid man-made shorelines. High-pressure water can dislodge attached organisms and may damage others.
- High-pressure, warm/hot-water flushing usually has only limited application for solid man-made structures. The
 heated water or the pressures may dislodge attached organisms or damage others.

^{*}Warm/hot-water flushing would be used only where road access is available to truck heated water to the site.

STEAM CLEANING

Hand-operated or remote-controlled units are used to dislodge, wash, and herd oil to a collection point. Output pressures from the unit are generally over 100 psi and may be as high as 1,000 psi with steam temperatures over 200°F. This tactic can be used with flooding to prevent redeposition of the oil.

SAND BLASTING

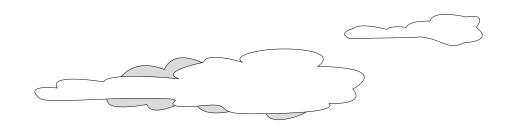
Hand-operated or remote-operated units are used to dislodge oil or abrade stains and thin weathered films of oil from a hard surface. Output pressures from the hose are usually less than 100 psi. Spent sand and dislodged oil can be collected by a drop-cloth arrangement below the working area.

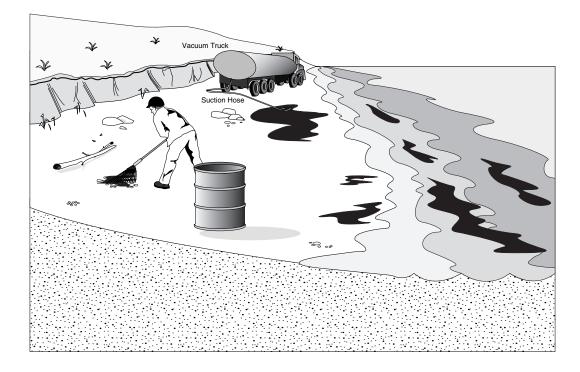
Shoreline Cleanup Using Steam Cleaning or Sand Blasting (Page 2 of 2) TACTIC SH-4

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

 See tactics on booming and skimming for additional equipment and personnel needs for recovery of free oil generated by these tactics.


	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Small Sand Blaster	ACS	Sand blasting	1	2	2 hr	2 hr
	Air Compressor	All	Air for sand blaster	1	_	1 hr	2111
or	Spillbuster Van	PBE, KRU	Steam cleaning	1	2	1 hr	
or	Steam Cleaner	ACS	Steam cleaning	1	2	2 hr	2 hr
	1000-Gal Water Tank	ACS	Water	1	_	2 hr	


TOTAL STAFF

- Unified Command approval is required for any shoreline cleanup tactic.
- Washing oil and/or sediments downslope to lower intertidal zones that may have plant or animal communities should be avoided, particularly if these were not initially oiled. This can be avoided by working at only mid-tide or higher water levels so that these communities are below the water line. This oil and oiled sediment should be contained and collected as part of the treatment process. If it cannot be recovered, the technique only disperses oil rather than cleans the shoreline.
- Steam cleaning has limited application and is used only on impermeable man-made surfaces. Generally, this is a very intrusive technique. Steam cleaning will kill most organisms.
- Sand blasting has limited application and is used only on impermeable man-made surfaces. Generally, this is
 a very intrusive technique. Sand blasting will remove all organisms and leave a clean and pristine, but barren,
 surface.
- Sand blasting systems use up to 1,000 lb. of sand per hour so that a considerable amount of waste material is generated. The movement of sand and oiled sand to lower intertidal zones that have attached plant or animal communities should be avoided.

TACTIC SH-5 Shoreline Cleanup Using Manual Removal and Vacuum Methods (Page 1 of 2)

This group of physical methods involves removal of the oil or oiled materials (sediments, debris, vegetation etc.) from the shore zone to a location where it can be disposed of.

MANUAL REMOVAL

The technique involves picking up oil, oiled sediments, or oily debris using gloved hands, rakes, pitchforks with screens, trowels, shovels, sorbent materials, buckets, etc. It may include scraping or wiping with sorbent materials or sieving if the oil has come ashore as tar balls. Collected material can be placed directly in plastic bags, drums, etc., for transfer. If the containers are to be carried to a temporary storage area they should not weigh more than can be easily and safely carried by one person. This tactic can be used practically and effectively in any location or on any shoreline type or oil type where access to the shore zone is possible and safe.

VACUUM

Truck-mounted vacuum systems may be used; the suction end usually is deployed manually to collect oil and/or oily water. These vacuum systems are primarily used where oil is pooled in natural depressions or hollows, or has been herded into collection areas. Vacuums can be used in combination with flooding or deluge techniques to float and collect oil. Vacuum trucks can be used to remove oil that is collected in sumps. A dual-head wash-vacuum system can be used in locations that are hard to access, such as between boulders and logs.

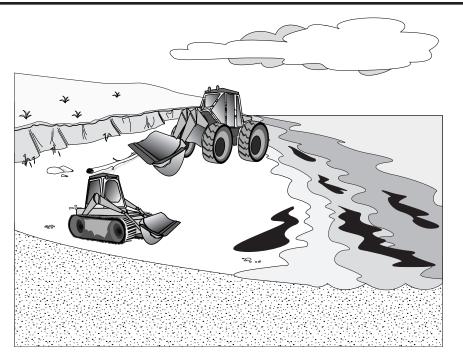
Shoreline Cleanup Using Manual Removal and Vacuum Methods (Page 2 of 2) TACTIC SH-5

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Rakes	All	Recovery	≥1	1	1 hr	0.5 hr
Pitch Forks w/Screen	All	Recovery	≥1	1	1 hr	1 hr
Shovels	All	Recovery	≥1	1	0.5 hr	0.5 hr
Sorbents	All	Recovery	≥1 Pkg.	1	1 hr	1 hr
Vacuum Truck	All	Recovery	1	2	1 hr	0.5 hr
Oily Waste Bags	All	Disposal	≥1 Box	_	0.5 hr	0.5 hr

TOTAL STAFF


2

CAPACITIES FOR PLANNING

• The typical suction rate for liquids by a vacuum truck is 200 bbl/hr in the summer and 150 bbl/hr in the winter. The typical suction rate for pooled diesel remains at 200 bbl/hr year round. (Vacuum truck recovery rate is reduced to 34 bbl/hr if if a Manta Ray skimmer is used.)

- Unified Command approval is required for any shoreline cleanup tactic.
- Manual removal is most applicable for:
 - Small amounts of viscous oil (e.g., asphalt pavement removal),
 - Surface or near-surface oil, and
 - Areas inaccessible to vehicles.
- Manual removal is labor intensive and slow for large oiled areas; although slower than mechanical removal, it
 generates less waste and the waste materials can be segregated easily at the source.
- Foot traffic should avoid the oiled zone to prevent carrying oil from there into previously clean locations. Foot traffic can have an adverse impact on marshes or in tidal flat areas. Excessive foot traffic can impact vegetated areas, such as backshore tundra, or can disturb adjacent resources, such as nesting birds.

Mechanical removal is more rapid than manual removal but generates larger quantities of waste. The method of operation varies considerably depending on the type of equipment that may be available and on the ability of that equipment to operate on a section of shore. The cleaning efficiency for each type of equipment is expressed in terms of the rate of cleaning that can be achieved and the amounts of waste that are generated.

Some equipment (e.g., Bobcats, front-end loaders, or vacuum trucks) can remove and transfer material directly to a truck or temporary storage area in a single step. Other types (graders and bulldozers) are less efficient and require two steps to move or side cast material that must then be picked up by other equipment (Bobcats, front-end loaders or backhoes) for transfer.

Several mobile beach cleaners have been developed specifically for oil spill cleanup; however, these are not locally available on the North Slope but may be brought in for medium- or large-scale response operations, if appropriate. Other beach cleaners designed for cleaning of debris can be adapted to pick up oiled tarballs. A commonly-used example is a mobile sieving unit drawn by a tractor.

Off-site beach cleaning machines that treat or wash and replace oiled materials are included in this part as they involve a waste management program of transfer, temporary storage and treatment, even if replaced on the shore. These off-site cleaners involve a multistep process as oiled material is removed from a beach and subsequently replaced by one or more types of earth-moving equipment.

EQUIPMENT AND PERSONNEL

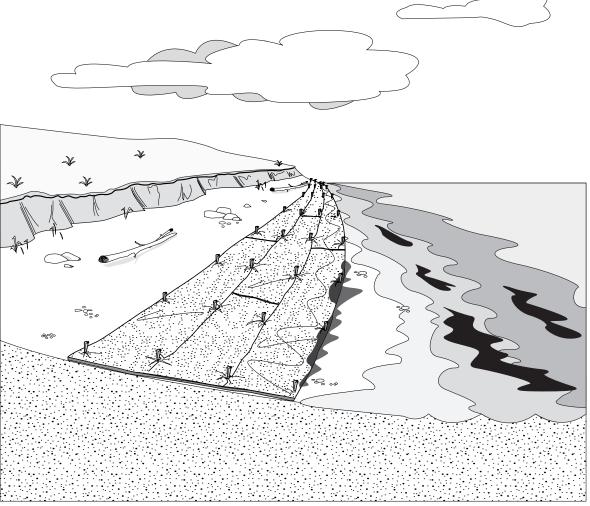
	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Bobcat	ACS, KRU, PBE, Alpine	Recovery	1	1	1 hr	0.5 hr
or	Front-End Loaders	All	Recovery	1	1	1 hr	0.5 hr
or	Backhoe	All, Peak, AIC	Recovery	1	1	2 hr	0.5 hr
	Wide-Track Dozer	All	Sediment Reworking	1	1	1 hr	0.5 hr
or	Grader	All	Recovery	1	1	1 hr	0.5 hr
	Vacuum Trucks	All	Recovery	1	1	1 hr	0.5 hr
or	Dump Trucks	All	Disposal	2	2	1 hr	0

TOTAL STAFF ≥

Shoreline Cleanup Using Mechanical Removal (Page 2 of 2) TACTIC SH-6

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

SUPPORT


	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
	Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
	Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr
Γ	Semi and Trailer	GPB, KRU, Alpine	Haul equipment	1	1 driver	1 hr	0

CAPACITIES FOR PLANNING

• The typical suction rate for liquids by a vacuum truck is 200 bbl/hr in the summer and 150 bbl/hr in the winter. The typical suction rate for pooled diesel remains at 200 bbl/hr year round. (Vacuum truck recovery rate is reduced to 34 bbl/hr if a Manta Ray skimmer is used.)

- Unified Command approval is required for any shoreline cleanup tactic.
- Mechanical removal can be used on all but solid, man-made shoreline types, although it has limited applicability
 for tidal flats, due to poor bearing capacity. The bearing capacity of the sediments and the slope of the shore
 zone, as well as the performance characteristics of the individual equipment, control the applicability of different
 types of machines.
- The various types of commercially-available earth-moving equipment have different operational requirements and different applications. The most important variable is the ability of a piece of equipment to travel on a beach type without becoming immobilized. Traction for wheeled equipment on soft sediments (low bearing capacity) can be improved by reducing tire pressures. Tracked equipment may be able to operate where wheeled vehicles cannot, but is not a preferred option as tracks disturb sediments or tundra surfaces to a much greater degree than tires. Each type of equipment has a particular application:
 - Graders: Can operate on only hard and relatively flat surfaces and are capable of moving only a thin cut (<3 inches) of surface material.
 - Loaders, bulldozers and backhoes: Can operate in a wider range of conditions and are designed to move large volumes of material and can dig as well as move material.
 - Backhoes: Use an extending arm or crane so that they may be operated from a backshore area and can reach to pick up material.
 - Beach cleaning machines: Operate in a number of different ways: mobile equipment cleans or treats on a beach whereas other equipment operates off-site (adjacent) to treat sediment so that cleaned material may be replaced on the beach.
 - Vacuum trucks: Remove pooled oil or oil collected in lined sumps.
- Use of mechanical techniques on tidal flats or marshes can cause significant adverse impacts, either by mixing oil with clean and/or subsurface sediments or by damaging plant stems and root systems.
- All earth-moving equipment is designed to move large volumes of material in a rapid and efficient manner, which
 is not always an appropriate approach for shoreline cleanup. Frequently the objective of a cleanup program is
 to use the equipment in such a way that only a thin cut of oiled sediment is removed. Usually the operator can
 advise on which piece of equipment is the most appropriate or practical to achieve a particular goal.
- Repeated handling or transfer of oiled sediments during mechanical removal should be avoided as much as possible as this increases the potential for spillage and decreases efficiency.

SORBENTS

Sorbent materials such as rolls or snares are placed in the shore zone to collect oil as it comes ashore (protection mode) or in the oiled area after it has been stranded (cleanup mode).

Usually the sorbents are deployed in fixed position, by stakes and/or anchors, as a line or parallel lines in the form of a floating boom or rope so that they are lifted and can move at the water's edge. Alternately, individual sorbents may be staked to swing over a fixed area as the water rises and falls.

In both the protection and cleanup modes, the sorbent material is left in place to collect oil for subsequent removal and disposal.

This technique is distinguished from the use of sorbent materials to manually remove oil. That technique is described under manual removal.

VEGETATION CUTTING

Vegetation cutting removes oiled plants to prevent remobilization of the oil and contact by wildlife or to accelerate the recovery of the plants. Usually, this is a manual operation involving knives, powered weed cutters, and/or rakes.

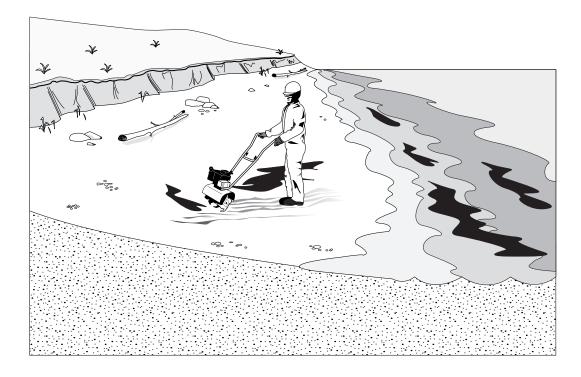
Shoreline Cleanup Using Sorbents and Vegetation Cutting (Page 2 of 2) TACTIC SH-7

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Knives	All	Vegetation removal	≥1	1	0.5 hr	0.5 hr
Weed Eater	PBE, KRU	Vegetation removal	≥1	1	1 hr	0.5 hr
Rakes	All	Vegetation removal	<u>≥</u> 1	1	1 hr	0.5 hr
Sorbents	All	Recovery	≥ 1 pkg.	1	1 hr	0.5 hr

TOTAL STAFF :


>2

- Unified Command approval is required for any shoreline cleanup tactic.
- Vegetation cutting is a labor-intensive technique that is used in marshes or on attached plants, such as seaweed,
 where there is concern that the oil may be released later to affect other resources, particularly wildlife. Also
 applicable where the continued presence of oil may pose a contact threat to animals and birds that use the area
 or to adjacent healthy organisms.
- Foot traffic from vegetation cutting can cause considerable damage in low-lying, drowned tundra, or marsh areas. Loss of plants or of stems and leaves can delay natural recovery rates and remove habitat for some species.
- Sorbents can be used on any shoreline type and for most oil types. Less applicable for very viscous, volatile oil types and for semisolid oils.
- Sorbents can quickly reach their capacity when in contact with large amounts of oil. When frequent replacement is necessary, which can occur even for relatively small amounts of oil, this is a labor-intensive activity that can generate large amounts of waste on a daily basis.
- · Sorbents can be run through a sorbent wringer and reused.
- Sections of sorbent boom can be placed at the water level and secured with fence posts every 10 feet to catch any oil that may be going back out into the water.

TACTIC SH-8 Shoreline Cleanup Using Mechanical Tilling/Aeration (Page 1 of 2)

Mechanical tilling/aeration exposes or breaks up surface and/or subsurface oil to accelerate evaporation and other natural degradation processes.

Heavy equipment is used to break up surface oil layers or to expose subsurface oil to natural weathering processes. This tactic may involve the use of farm-type equipment such as a disc system, harrow, plough, rakes or tines, or earth-moving equipment such as front-end loaders, graders, or bulldozers.

Shoreline Cleanup Using Mechanical Tilling/Aeration (Page 2 of 2) TACTIC SH-8

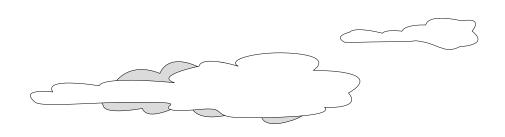
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Aerator	KRU	Aeration	1	1	2 hr	1 hr
or	Roto-tiller	PBE	Aeration	1	1	2 hr	1 hr
or	Front-End Loader	All	Aeration	1	1	1 hr	0.5 hr
or	Grader w/Scarifying Teeth	All	Aeration	1	1	2 hr	0.5 hr
or	Dozer w/Ripper Teeth	GPB, KRU, Peak	Aeration	1	1	1 hr	0.5 hr
or	Tractor w/Tilling Attachment	Peak	Aeration	1	1	1 hr	0.5 hr
or	Skid-Steer w/Trimmer	All	Aeration	1	1	1 hr	0.5 hr

TOTAL STAFF

>2


SUPPORT

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Haul equipment	1	1 driver	1 hr	0
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr

- Unified Command approval is required for any shoreline cleanup tactic.
- Mechanical tilling/aeration can be used on coarse sediment (pebble/cobble) or sand beaches and is particularly
 useful in promoting evaporation (safety evaluations are crucial to ensuring that volatile fractions are not present).
 This method may be used in conjunction with manual removal (to pick up patches of oil that are exposed) or
 hipremediation.
- If oil or oiled sediments have been buried by a clean layer of material, it may be appropriate to remove that clean layer to a temporary storage location, replacing it after tilling or aeration and after the exposed oiled materials have been allowed to weather.
- Care should be taken to not alter the shoreline such that erosion/accretion occur. This method may affect biological populations.

TACTIC SH-9 Shoreline Cleanup Using Sediment Reworking and Surf Washing (Page 1 of 2)

Sediment reworking/surf washing accelerate natural degradation by exposing oil and oiled materials to higher levels of physical (wave) energy.

Earth-moving equipment is used to move oil or oiled sediments to a location where these processes are more active — from surface or subsurface areas where they are protected from natural physical abrasion and weathering processes or where these processes occur at relatively slower rates.

Farm-type machinery (such as a disc system, harrow, plough, rakes or tines) or earth-moving equipment (such as front-end loaders, graders, or bulldozers) can be used.

Shoreline Cleanup Using Sediment Reworking and Surf Washing (Page 2 of 2) TACTIC SH-9

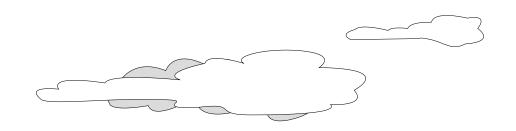
NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

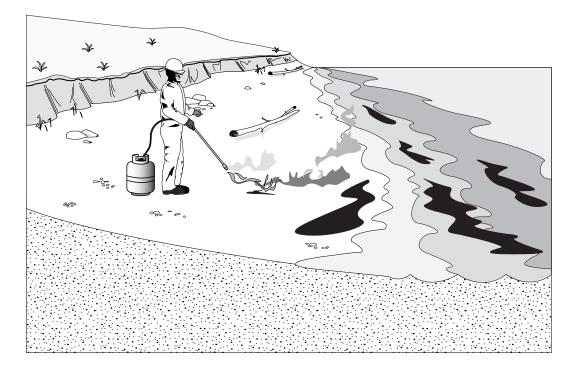
EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Front-End Loader	All	Sediment reworking	1	1	1 hr	0.5 hr
or	Grader	All	Sediment reworking	1	1	2 hr	0.5 hr
or	Wide-Track Dozer	All	Sediment reworking	1	1	1 hr	0.5 hr
or	Tractor w/Tilling Attachment	Peak	Aeration	1	1	1 hr	0.5 hr

TOTAL STAFF ≥

≥2


SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Haul equipment	1	1 driver	1 hr	0

- Unified Command approval is required for any shoreline cleanup tactic.
- If oil or oiled sediments have been buried by a clean layer of material, it may be appropriate to remove that clean layer to a temporary storage location, replacing it after reworking or washing the exposed oiled materials and after they have been redistributed by wave action.
- Sediment reworking/surf washing can be used on coarse sediment (pebble-cobble) or sand beaches, and is particularly useful:
 - In promoting evaporation and physical abrasion;
 - Where sediment removal may cause beach instability (i.e., potential erosion);
 - Where oiled sediments are located above the limit of normal wave action;
 - Where oil or oiled sediments have been buried or oil has penetrated to a level below the normal or seasonal wave-action zone; and
 - Where other cleanup or treatment activities have removed most of the oil or oiled sediment and only light oiling (i.e., stains) remains.
- Degradation requires wave action, so that the applicability of the technique decreases in sheltered or low waveenergy environments.
- Sediment reworking/surf washing is not appropriate if large amounts of oil might be released that could threaten to re-oil the beach or adjacent locations. Oiled materials should not be moved into shoreline areas where the oil and/or the sediments could damage other resources.

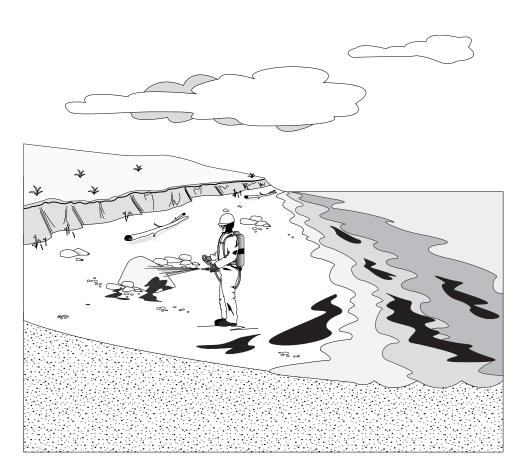
TACTIC SH-10 Shoreline Cleanup Using Burning (Page 1 of 2)

Oil on a beach will not sustain combustion by itself unless it is pooled or has been concentrated in sumps, trenches, or other types of containers. This technique is used primarily where combustible materials, such as logs or debris, have been oiled and can be collected and burned, or where vegetation, such as a marsh, has been heavily oiled.

Torches can be used to burn oil from hard substrates, but this is a labor-intensive method that uses large amounts of energy to remove small amounts of oil.

Shoreline Cleanup Using Burning (Page 2 of 2) TACTIC SH-10

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).


EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Propane Weed Burner	All	In-situ burning	1	1	1 hr	0.5 hr
or	Hand-Held Igniter	ACS	In-situ burning	<u>≥</u> 1	1	1 hr	0.5 hr

TOTAL STAFF

- Proper safety procedures must be followed, and the necessary personal protective equipment (PPE) must be
- Unified Command approval is required for any shoreline cleanup tactic.
- · Responders should work from upwind edge of spill to downwind edge.
- Burning is applicable primarily for oiled peat, logs or debris, or where oil has been collected and can be ignited with sustained combustion in sumps or drums.
- Burning has been used effectively for oil spills on ice.
- Burning of heavily oiled marsh vegetation has a major impact on the ecosystem if the marsh soils are dry, as the root systems can be destroyed. Wet soils protect the root systems from heat damage so that recovery from burning is more rapid.
- Generation of smoke may be an undesirable side effect, although this is not a health or safety issue provided that standard precautions are observed.
- Burning requires that appropriate permit(s) be obtained (see Tactic B-1).

This technique involves chemical agents or nutrients that alter the character of the stranded oil either to facilitate removal of the oil from the shore zone or to accelerate in-situ weathering. Nutrient enrichment and bioremediation can use products that have been developed for other applications. The other techniques in this group involve agents or materials that are designed specifically for oil spill response and that are available commercially from manufacturers and/or suppliers. Only bioremediation is a stand-alone technique; the remaining methods require an additional removal component.

SHORELINE CLEANERS

Shoreline cleaning (or surface washing) agents contain a surfactant that alters the surface tension of the oil, by a mechanism often referred to as detergency, so that the oil does not stick to substrate materials. The oil is lifted by rising tidal water levels and can be transported away from the shore. Cleaners may also be used to pretreat shorelines to prevent oil from becoming stranded.

Cleaning agents can be applied directly to an oiled area with a hand spray or hose system. It may be used directly or as a presoak that is left for some time prior to flooding or flushing. The soak time varies depending on temperature and on the character of the oil. The preferred application is to use the agent on a rising tide so that the oil is immediately lifted from the shore, particularly on coarse-sediment beaches, as this minimizes the amount of oil that can be carried into the subsurface.

SOLIDIFIERS AND VISCO-ELASTIC AGENTS

Visco-elastic agents increase the viscosity of oil to enhance recovery and collection. Solidifiers alter the oil from a liquid to a solid in order to make recovery easier or to prevent remobilization or spreading of the oil. Agents may be available in a powder form that can either be applied directly or mixed with water prior to application. The agent is spread over and mixed with the oil. These agents are used in conjunction with removal techniques.

NUTRIENT ENRICHMENT/BIOREMEDIATION

Naturally-occurring microorganisms (bacteria) use oxygen to convert hydrocarbons into water and carbon dioxide. This process usually occurs at the water interface and is limited by oxygen and nutrient availability and by the exposed surface area of the oil. If these three factors can be increased, then the rate of biodegradation can be accelerated.

Fertilizers can be obtained in solid or liquid form. Solid fertilizers can be broadcast using seed spreaders. On contact with water, the fertilizer slowly dissolves and releases water-soluble nutrients over time. Liquid fertilizers can be sprayed onto a shoreline using a number of commercially available types of equipment, such as paint sprayers.

EQUIPMENT AND PERSONNEL

Equipment for biological/chemical shoreline response tactics must be obtained from out of region.

- Unified Command approval is required for any shoreline cleanup tactic.
- The use of chemicals to control oil discharges or treat oiled shorelines is controlled by state and federal regulations; appropriate approvals and permits are required.
- Shoreline cleaners can be used on fresh or salt water, and the technique is applicable for all types of oil. Shoreline cleaners are usually used in conjunction with collection techniques, such as sorbents and skimmers, to contain and recover the oil as is it released.
- The effectiveness of shoreline cleaners is a function of oil type, and decreases as the specific gravity of the oil
 increases. The success of the method is dependent, to a degree, on the ability to contain and collect the oil that
 is released.
- Solidifiers and visco-elastic agents can be used in either fresh or salt water conditions. These agents are not
 applicable where large pore spaces (cobble or boulders) might result in loss of the oil in the subsurface sediments or where there is oiled vegetation, as it may incorporate or smother healthy plants and animals. The dose
 increases as the viscosity of the oil decreases so that for some agents, approximately 10 to 20 times more agent
 is required to alter the viscosity of a light fuel oil than for a heavy fuel oil.
- Bioremediation can be used on all shoreline types without affecting plants or animals. Bioremediation is best for
 use on residual oil after other techniques have been used to remove mobile or bulk oil from the shoreline. Applications may be repeated periodically to continue the supply of nutrients. Bioremediation may require tillers for
 mixing treatment agents with contaminated material.
- Fertilizers may be used alone on a shore to degrade residual surface and/or subsurface oil, but the process is
 more effective if combined with tilling or other methods of breaking the oil into smaller particles, thereby significantly increasing the surface area for the microorganisms to affect.
- Nutrient enrichment/bioremediation is relatively slow compared to other response options. Since the rate of biodegradation decreases with lower temperatures, nutrient enrichment is more effective during warmer summer months.

TACTIC SH-12 Summary of Potential Impact of Shoreline Cleanup Techniques (Page 1 of 2)

SUMMARY OF RELATIVE POTENTIAL IMPACT OF RESPONSE TECHNIQUES IN THE ABSENCE OF OIL

		SOLID MAN- MADE	PEBBLE COBBLE	MIXED SAND- GRAVEL	SAND BEACH	SAND FLAT	MUD FLAT	MARSH	PEAT	LOW- LYING TUNDRA	TUNDRA CLIFF
1)	Natural Recovery	L	L	L	L	L	L	L	L	L	L
Phy	sical Cleaning — V	Vashing									
2)	Flooding	L	L	M	L	L	L	L	L	L	L
3)	Low-Presure Cold-Flush	٦	М	М	М	М	Н	L	L	L	L
4)	Low-Pressure Hot/Warm Flush	L	М	М	н	Н	н	н	М	н	L
5)	High-Pressure Cold Flush	L	Н	н	н	н	н	н	н	н	М
6)	High Pressure Warm/Hot Flush	М	Н	Н	н	Н	Н	н	Н	н	н
7)	Steam Cleaning	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
8)	Sand Blasting	Н	Н	Н	-	-	-	-	-	-	Н
Phy	sical Cleaning — F	Removal/E	Disposal								
9)	Manual Removal	L	L	L	L	М	Н	н	L	М	L
10)	Vacuums	L	L	L	L	M	Н	М	L	М	L
11)	Mechanical Removal	ı	М	М	М	М	н	н	М	н	L
12)	Vegetation Cutting	М	ı	-	-	-	Н	н	-	н	-
13)	Passive Sorbents	L	L	L	L	L	М	L	L	L	L
Phy	sical Cleaning — //	n Situ									
14)	Tilling	-	М	M	М	M	Н	Н	Н	Н	-
15)	Surf Washing	-	М	М	М	Н	Н	Н	M	Н	L
16)	Burning	М	Н	Н	н	M	М	н	Н	Н	-
Trea	atment — Chemica	l/Biologic	al								
17)	Shore Cleaners	L	L	L	L	-	-	М	-	М	L
18)	Solidifiers	-	L	L	L	M	М	М	L	М	L
19)	Bioremediation	L	L	L	L	L	L	L	L	L	L

H = High M = Moderate

L = Low

Summary of Potential Impact of Shoreline Cleanup Techniques (Page 2 of 2) TACTIC SH-12

SUMMARY OF WASHING OR FLUSHING TECHNIQUE RANGES

TECHNIQUE	PRESSURE RANGE (psi)	TEMPERATURE RANGE (°F)
(2) Flooding ("deluge")	< 20	Ambient seawater
(3) Low-pressure, cold flushing	< 50	Ambient seawater
(4) Low-pressure, warm/hot flushing	< 50	80 - 212
(5) High-pressure, cold flushing	50 - 1,000	Ambient seawater
(5) "Pressure washing"	> 1,000	Ambient seawater
(6) High-pressure, warm/hot flushing	50 - 1,000	80 - 212
(7) Steam cleaning	50 - 1,000	212
(8) Sand blasting	~ 50	n/a

SUMMARY OF RESOURCE REQUIREMENTS, RELATIVE RATES, AND WASTE GENERATION FOR REMOVAL TECHNIQUES

	TECHNIQUE	RESOURCE REQUIREMENTS	CLEANUP RATE	WASTE GENERATION
(9)	Manual removal	Labor intensive	Slow	Minimal
(10)	Vacuums (manual)	Labor intensive	Slow	Moderate
(11)	Mechanical removal			
	Grader/scraper	Minimal labor support	Very rapid	Moderate
	Front-end loader	Minimal labor support	Rapid	High
	Bulldozer	Minimal labor support	Rapid	Very high
	Backhoe	Minimal labor support	Medium	High
	Dragline/clamshell	Minimal labor support	Medium	High
	Beach cleaners	Minimal labor support	Slow	Low
	Vacuum trucks	Minimal labor support	Rapid	Low
(12)	Vegetation cutting	Labor intensive	Slow	Can be high
(13)	Passive sorbents	Labor intensive if used extensively with large amounts of oil	Slow	Can be high if frequent change-outs required

WILDLIFE PROTECTION STRATEGY

The wildlife protection strategy for the North Slope is based on the Wildlife Protection Guidelines for Alaska, Version 2020.1, August 2020.

The complete, current Wildlife Protection Guidelines document may be found at https://alaskarrt.org/PublicFiles/WPG-v2020%251.pdf.

There are three response strategies to protect wildlife:

CCS

1

PRIMARY RESPONSE

Containment and Recovery of Oil

- Control release and spread of oil.
- · Recover oil as quickly as practicable.
- · Keep oil from contaminating critical habitat.
- · Collect oiled carcasses.

2.

SECONDARY RESPONSE

Wildlife Hazing

- · Haze wildlife away from spill area.
- · Deter wildlife from entering spill area.

3

TERTIARY RESPONSE

Capture, Stabilization, and Treatment of Oiled Wildlife

 Use as a last resort if primary and secondary response strategies are unsuccessful.

BEST MANAGEMENT PRACTICES (BMPs)

The Wildlife Protection Guidelines include Best Management Practices to protect responders and to reduce impacts to wildlife and their habitats during an oil spill response. These should be considered general guidance during spill responses. Not all BMPs will be applicable to every response.

Incident-specific guidance should be developed through the Startup and Comprehensive Wildlife Response Plans and through the ESA section 7 consultation process. Best available information and professional judgment should be used when determining how to implement BMPs during a response.

Additional information on wildlife response considerations, protection measures, and activities relevant to the Operations Section can be found in Section 3600 of the Wildlife Protection Guidelines.

Standalone copies of these BMPs may be found at https://dec.alaska.gov/spar/ppr/contingency-plans/response-plans/tools/.

WILDLIFE RESPONSE PLANS (WRPs)

The Technical Manual includes both the Startup and Comprehensive Wildlife Response Plans. Both WRPs include requests to conduct primary, secondary, and tertiary response strategies. Section 3650 provides more information about these forms and instructions for how to complete them. Fillable full-page versions of the Startup and Comprehensive WRPs are on the ADEC Area Plan References and Tools web page. https://dec.alaska.gov/spar/ppr/contingency-plans/response-plans/tools/.

Additional information on wildlife response considerations, protection measures, and activities relevant to the Operations Section can be found in Section 3600 of the Wildlife Protection Guidelines.

Standalone copies of these BMPs may be found at https://dec.alaska.gov/spar/ppr/contingency-plans/response-plans/tools/.

WILDLIFE PERMITS

Wildlife Protection Strategy and Permits (Page 2 of 2) TACTIC W-1

Permits are required for any secondary or tertiary wildlife response (i.e., hazing or collecting and holding).

ACS has obtained permits from the Alaska Department of Fish and Game (ADF&G) and the U.S. Fish and Wildlife Service (USFWS) to authorize trained and qualified personnel to conduct wildlife response activities related to birds and land (terrestrial) mammals during an oil spill. This can include hazing of non-oiled animals to keep them away from the spill and capture, stabilization, transport, and rehabilitation of oiled animals. ACS does not have permits to haze or handle marine mammals (polar bears, walruses, sea otters, whales, porpoises, seals, or sea lions), and defers to Member Company Letters of Authorization for hazing and incidental take of polar bears. ACS maintains trained personnel capable of performing polar bear hazing operations under these Member Company

ACS has the following permits from ADF&G:

- Permit FG05-III-0012: Hazing, capture, stabilization, transport, and rehabilitation of birds.
- Permit FG05-III-0013: Hazing terrestrial mammals.

Each ADF&G permit requires that:

- The Plan of Operations that is attached to the permit must be followed.
- Personnel performing hazing must be appropriately trained (personnel covered by the permit include contractors and employees of ACS and its member companies).
- · Hazing is prohibited during oil spill drills and exercises or during construction or maintenance activities.
- The ADF&G Habitat and Restoration Division in Fairbanks must be notified as soon as practical after hazing activities have begun.
- A written report must be submitted to ADF&G within 30 days after hazing has stopped.

The ACS permit from the USFWS covers hazing, capture, stabilization and treatment of migratory birds. This provides the required federal authorization to perform the functions allowed in the ADF&G permit.

Responders may conduct certain permitted wildlife response activities if:

- 1. All conditions and terms of the permit are followed.
- 2. The appropriate wildlife agency representative is notified according to the terms of the permit and informed of actions taken and planned.
- 3. A Startup or Comprehensive WRP is submitted to the wildlife agencies within 24 hours of initiating the permitted activities.
- 4. The permitted activity does not also require incident-specific authorization (e.g., as carcass collection does).

Even with these permits, a request for wildlife response activities will need to be initiated. A two-phase process allows initial wildlife response strategy implementation as soon as possible using the Startup WRP (Section 9740.3.8.1) and allows additional details to be added in the Comprehensive WRP (Section 9740.3.8.2) as the spill response continues.

STATE AND FEDERAL PERMITS AND/OR AUTHORIZATIONS REQUIRED FOR HAZING, COLLECTING OR HOLDING LIVE ANIMALS

	ALASKA DEP FISH AN	ARTMENT OF D GAME	FISH & WILDI	LIFE SERVICE	NATIONAL FISHERIE	L MARINE S SERVICE
	Collect and Hold ¹	Haze ²	Collect and Hold ³	Haze⁴	Collect and Hold	Haze
Migratory Birds	NO	YES	YES ³	NO¹	NO	NO
Sea Otters, Walruses, and Polar Bears	NO¹	NO¹	YES	YES	NO	NO
Whales, Porpoises, Seals, and Sea Lions	NO	NO	NO	NO	NO	YES
Terrestrial Mammals	YES	YES	NO	NO	NO	NO

An ADF&G permit is also needed to collect, hold, or haze any species on the State endangered species list.

² Passive hazing (e.g., balloons, scare eye balloons, Mylar tape) does not require an ADF&G permit.

³ Includes salvage of dead, oiled wildlife.

⁴ A USFWS permit is also needed to haze species managed by USFWS including those listed on the Federal endangered species list.

I. Incid	ent Summary	
Incident Name:	Date / Time Prepar	red:
Incident Location:	Date / Time at 72 h	nours after start of spill:
Prepared By (print):	Affiliation:	ICS Position:
☐ Amendment/update (all previous versions must be		
	achments:	WELLING D
☐ Location map/sketch (ICS 201) or narrative	•	Wildlife Response Permits
☐ Incident Status Summary (ICS 209) or narrative	No.) or authorization	permits (attach first page with Perm
 ☐ Resources at Risk (ICS 232) ☐ ESA section 7 consultation documents 	1 '	ons authorizations (attach first page with
	Authorization No.)	
☐ Completed Wildlife Observation Forms☐ Other	Adthorization No.)	
		-
II. State and Federal On-Sc	ene Coordinator Respo	onse to Request
State On-Scene Coordinator's decision	regarding proposed wild	llife response activities:
Time Received:	Date Received:	
Time Received: Concur with wildlife agencies. Do not concur for the following reason(s):		
☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s):		
Concur with wildlife agencies.		
☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s): Signature: Time:	Date Received:	Idlife response activities:
☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s): Signature:	Date Received:	Idlife response activities:
☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s): Signature: Time: Federal On-Scene Coordinator's decision Time Received:	Date Received: Date: regarding proposed will	Idlife response activities:
☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s): Signature: Time: Federal On-Scene Coordinator's decision Time Received: ☐ Concur with wildlife agencies.	Date Received: Date: regarding proposed will	Idlife response activities:
☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s): Signature: Time: Federal On-Scene Coordinator's decision Time Received:	Date Received: Date: regarding proposed will	Idlife response activities:
□ Concur with wildlife agencies. □ Do not concur for the following reason(s): Signature: Time: Federal On-Scene Coordinator's decision Time Received: □ Concur with wildlife agencies. □ Do not concur for the following reason(s):	Date Received: Date: regarding proposed will	Idlife response activities:
☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s): Signature: Time: Federal On-Scene Coordinator's decision Time Received: ☐ Concur with wildlife agencies.	Date Received: Date: regarding proposed will	Idlife response activities:
☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s): Signature: Time: Federal On-Scene Coordinator's decision Time Received: ☐ Concur with wildlife agencies. ☐ Do not concur for the following reason(s): Signature:	Date: Date: Date: Date Received:	Idlife response activities:

STARTUP Wildlife Response Plan

III. Wildlife Agency R	espons	e to Request	
Expiration of Startup Wildlife Response Activities (as determ	ined by	wildlife agencies):	
Date:	Time:		
ADF&G Recommendation/Decision:			
Approve requested activities as proposed			
Approve requested activities as amended			
☐ Deny requested activities for the following reason(s):			
Signature:		Date:	Time:
USFWS Recommendation/Decision:			
Approve requested activities as proposed			
☐ Approve requested activities as amended			
☐ Deny requested activities for the following reason(s):			
berry requested activities for the following reason(s).			
Signature:		Date:	Time:
Signature.		Date.	Time.
NMFS Recommendation/Decision:			
☐ Approve requested activities as proposed			
☐ Approve requested activities as amended			
☐ Deny requested activities for the following reason(s):			
Signature:		Date:	Time:

Acronyms in Startup WRP

ADF&G = Alaska Department of Fish and Game

BIA = Biologically Important Area (https://coast.noaa.gov/ digitalcoast/data/biologicallyimportantareas.html)

ESA = Endangered Species Act

ICS = Incident Command System

IMT = Incident Management Team LOA = Letter of Authorization

MMHSRP = Marine Mammal Health and Stranding Response

Program

MMPA = Marine Mammal Protection Act

NMFS = National Marine Fisheries Service OLE = Office of Law Enforcement

OSRO = Oil Spill Removal/Recovery Organization

PRAC = Primary Response Action Contractor

RP/PRP = Responsible Party/Potential Responsible Party¹

UAS = unmanned aerial/aircraft system, "drones"

USFWS = U.S. Fish and Wildlife Service

WPG = Wildlife Protection Guidelines for Oil Spill Response in Alaska

WRP = Wildlife Response Plan

¹ "RP/PRP" includes any entity contracted by the RP/PRP (or their ORSO/PRAC for the response) and is intended to include the RP/PRP, their contractors, the permittee, or whomever is directly responsible for carrying out this plan.

Wildlife Protection Guidelines version 2020.1

Page 2 of 17

STARTUP Wildlife Response Plan

IV. Request for Startup of Wildlife Response Strategies
Part A – Species and Habitats
This section to be filled out by RP/PRP.
Instructions: All questions must be answered by checking the appropriate box or writing in the information where applicable. Check with wildlife agencies if unsure about
Species and Habitats. If more space is needed, attach a separate Word® document referencing appropriate section and numbers (for example, IV., 1., C., 1.) or reference and
include applicable attachments. Fill this form out with the best available information with as much detail as possible. In some incidents, specific numbers of species may be
available from actual observations and would be reported, for example, as "3 Cook Inlet beluga whales," whereas if best available information is used to estimate numbers for
an area known to support high concentrations of migratory birds, it could be reported as "tens of thousands" of "waterfowl, seabirds, and shorebirds." Use as much space as
needed on this form or a separate document can be attached. It is understood that conditions may change from the time this form is filled out until the Comprehensive WRP
is finalized. Questions are intended to ensure that, once initiated, all aspects of the response strategy will be addressed. Answers may be brief and succinct. Detailed
explanations will be required in the Comprehensive WRP.

etc.) and how many are likely p	etc.) and how many are likely present (use actual observations or estimates from reliable resources).	or estimates from reliable resour	ces).	
Migratory Birds, Eagles, or Non-Migratory Birds	Sea Otters, Walruses, or Polar Bears	Whales, Seals, Sea Lions, Porpoises, or Dolphins	Brown or Black Bears, Ungulates, or Furbearers	Fish, Shellfish, or Invertebrates
Migratory birds ☐ YES ☐ NO	Sea otters □ YES □ NO	Whales □ YES □ NO	Brown or black bears □ YES □ NO	Fish □ YES □ NO
Which species?	How many?	Which species?	Which species?	Which species?
		Seals		
Eagles	Walruses	☐ YES ☐ NO How many?	Ungulates	Shellfish
How many?	☐ YES ☐ NO How many?	Which species?	How many?	How many?
Which species?			Which species?	Which species?
		Sea lions □ YES □ NO		
Non-migratory birds	Polar bears	How many?	Furbearers	Invertebrates
□ YES □ NO	□ YES □ NO	Porpoises or Dolphins	□ YES □ NO	□ YES □ NO
How many? Which species?	How many?	☐ YES ☐ NO How many?	How many?	How many?Which species?
		Which species?		

NOTE: All values given on these pages are for planning purposes only.

continued on next page Wildlife Protection Guidelines version 2020.1

Page 3 of 17

STARTUP Wildlife Response Plan

	IV. Req	IV. Request for Startup of Wildlife Response Strategies Part A – Species and Habitats (continued)	llife Response Strategie bitats (continued)	Si	
Species and Habitats	Migratory Birds, Eagles, or Non-Migratory Birds	Sea Otters, Walruses, or Polar Bears	Whales, Seals, Sea Lions, Porpoises, or Dolphins	Brown or Black Bears, Ungulates, or Furbearers	Fish, Shellfish, or Invertebrates
ESA-listed Species What ESA-listed species or critical habitat are or may be in the area?					
All Wildlife Where/how close are wildlife to the spill and trajectory?					
All Wildlife Which sensitive life stages or habitats could be affected by the spill or by the response activities?	 □ Colonies □ Nests: Incubating or with hatchlings □ Migration or staging area □ Fledglings □ Active eagle nests 	☐ Haulouts☐ Pupping☐ Dens	☐ Haulouts☐ Rookeries☐ Lairs☐ BIAs	□ Dens□ Insect relief□ Calving orIambing areas	□ Eggs/larvae□ Migration corridor□ Anadromous waterbody

Wildlife Protection Guidelines version 2020.1

Page 4 of 17

Plan	
sponse	
ife Res	
Wildli Wildli	
ARTUP	
ST	

	IV. Request fo	or Startup of Wildlife	Request for Startup of Wildlife Response Strategies		
	Part	Part B - Proposed Response Strategies	se Strategies		
Primary Response Strategy – Carcass Collection	Migratory Birds, Eagles, or Non-Migratory Birds	Sea Otters, Walruses, or Polar Bears	Whales, Seals, Sea Lions, Porpoises, or Dolphins	Brown or Black Bears, Ungulates, or Furbearers	Fish, Shellfish, or Invertebrates
	Migratory birds □ YES □ NO	Sea otters □ YES □ NO	Whales □ YES □ NO	Brown or black bears ☐ YES ☐ NO	Fish
1. Is carcass collection proposed	Eagles	Walruses □ YES □ NO	Seals YES NO	Ungulates ☐ YES ☐ NO	Shellfish
within 72 hours after the start of the spill?	Non-migratory birds □ YES □ NO	Polar bears □ YES □ NO	Sea lions	Furbearers ☐ YES ☐ NO	Invertebrates ☐ YES ☐ NO
			Porpoises or Dolphins □ YES □ NO		
If YES for any species, complete A through H in Part C – Supporting Information for Proposed Response Strategy.	through H in Part C – Supp	oorting Information for	Proposed Response Stra	xtegies under 1. Primary	Response Strategy.

Secondary Response Strategy – Hazing/Deterrence	Migratory Birds, Eagles, or Non-Migratory Birds	Sea otters, Walruses, or Polar Bears	Whales, Seals, Sea Lions, Porpoises, or Dolphins	Brown or Black Bears, Ungulates, or Furbearers
	Migratory birds ☐ YES ☐ NO	Sea otters □ YES □ NO	Whales	Brown or black bears □ YES □ NO
	Eagles □ YES □ NO	Walruses □ YES □ NO	Seals	Ungulates □ YES □ NO
 Is hazing/deterrence proposed within 72 hours after the start of the spill? 	Non-migratory birds ☐ YES ☐ NO	Polar bears □ YES □ NO	Sea lions	Furbearers
	□ PASSIVE ONLY	☐ PASSIVE ONLY	Porpoises or Dolphins ☐ YES ☐ NO	☐ PASSIVE ONLY
			☐ PASSIVE ONLY	
16 VEC for any energies complete A through H in Dort C - Cumpating Information for Department Describes Under 2 Computers Describes	Day C Cunnorting	Information for Depoched Do	Cappen Chartoning Con	Ondary Docuous Charton

continued on next page

Wildlife Protection Guidelines version 2020.1

	IV. Request for Sta Part B – Propose	. Request for Startup of Wildlife Response Strategies Part B - Proposed Response Strategies (continued)	itrategies tinued)	
Tertiary Response Strategy – Capture, Transport, Stabilization, Rehabilitation	Migratory Birds, Eagles, or Non-Migratory Birds	Sea otters, Walruses, or Polar Bears	Whales, Seals, Sea Lions, Porpoises, or Dolphins	Brown or Black Bears, Ungulates, or Furbearers
	Migratory birds ☐ YES ☐ NO	Sea otters □ YES □ NO	Whales □ YES □ NO	Brown or black bears ☐ YES ☐ NO
 Is capture, transport, stabilization, or rehabilitation 	Eagles □ YES □ NO	Walruses □ YES □ NO	Seals	Ungulates □ YES □ NO
proposed within 72 hours after the start of the spill?	Non-migratory birds ☐ YES ☐ NO	Polar bears ☐ YES ☐ NO	Sea lions □ YES □ NO	Furbearers
			Porpoises or Dolphins ☐ YES ☐ NO	
If YES for any species, complete A through J in Part C – Supporting Information for Proposed Response Strategy.	hrough J in <i>Part C – Supportin</i> g	y Information for Proposed Re	ssponse Strategies under 3. Te	rtiary Response Strategy.
continued on next page (if any YES)				

Wildlife Protection Guidelines version 2020.1

			sair e arppoi mig mjoi manon joi s i oposea nesponse on aregies		
1. Primary Response Strategy – Carcass Collection	Migratory Birds, Eagles, or Non-Migratory Birds	Sea Otters, Walruses, or Polar Bears	Whales, Seals, Sea Lions, Porpoises, or Dolphins	Brown or Black Bears, Ungulates, or Furbearers	Fish, Shellfish, or Invertebrates
A. Status of permits and authorizations for Carcass collection? If pre-issued, list permit or authorization (number.	Requesting Pre-issued (non-migratory birds only)	☐ Requesting	☐ Requesting ☐ Pre-issued	☐ Requesting	☐ Requesting ☐ Pre-issued
 B. Who will collect carcasses (RP/PRP staff, OSRO/PRAC, contractor, other)? List all if multiple. What is their status (on alert/standby, mobilizing, on site and ready, etc.)? When will they arrive at the field/spill site? 					
C. What equipment will be used for carcass collection activities? When will it arrive at the field/spill site?					
D. How will carcasses be transported from the field to the morgue or staging area? When will transportation be fully operational?					

Part C – Supporting Information for Proposed Response Strategies (continued) Migratory Birds, Eagles, or Continued) Molruses, or Birds Birds Polar Bears Whales, Seals, Brown or Sea Otters, Sea Lions, Black Bears, Polar Bears Dolphins Furbearers	be established? ational?	refrigerated (for no rozen until morgue is	representative be	VPG Tactic Collection Oocumentation of
1. Primary Response Strategy – Aupporting Information (continued) Dart C – Supporting Information Information (continued) Non-Migham Bir	E. Where will the morgue be established?▶ When will it be operational?	F. Where will carcasses be refrigerated (for no more than 48 hours) or frozen until morgue is fully operational?	G. Have you requested (e.g., submitted ICS form 213RR) a wildlife agency representative be the carcass custodian?	H. Describe any proposed deviations from the procedures outlined in WPG Tactic Collection of Small Carcasses and Documentation of Large Carcasses.

Wildlife Protection Guidelines version 2020.1

Page 8 of 17

2. Secondary Response Strategy— Requesting Personner Previous Previo	IV Part C – Suppo	IV. Request for Startup of Wildlife Response Strategies Part C – Supporting Information for Proposed Response Strategies (continued)	Wildlife Response Strates Oposed Response Strates	gies jies (continued)	
Status of permits and authorizations for hazing/deterrence of non-target species Status of permits and authorization number. Pre-issued Pre-issu	2. Secondary Response Strategy – Hazing/Deterrence	Migratory Birds, Eagles, or Non-Migratory Birds	Sea Otters, Walruses, or Polar Bears	Whales, Seals, Sea Lions, Porpoises, or Dolphins	Brown or Black Bears, Ungulates, or Furbearers
Are any of the following present in the area where hazing is proposed? Molting waterfowl Haulouts Haulo	Stat hazi				
What non-target species might be in the area that could be inadvertently hazed/deterred? What methods will be employed to avoid hazing/deterrence of non-target species?				ESA-listed species Haulouts Rookeries Pups Lairs BIAs	
	t that A				

	Brown or Black Bears, Ungulates, or Furbearers			
jies ies (continued)	Whales, Seals, Sea Lions, Porpoises, or Dolphins			
IV. Request for Startup of Wildlife Response Strategies Part C – Supporting Information for Proposed Response Strategies (continued)	Sea Otters, Walruses, or Polar Bears			
equest for Startup of Wildlife Responing Information for Proposed Respons	Migratory Birds, Eagles, or Non-Migratory Birds			
IV. R Part C – Support	2. Secondary Response Strategy – Hazing/Deterrence (continued)	D. Who will conduct deterrence/hazing activities (RP/PRP staff, OSRO/PRAC, contractor, other)? List all if multiple. > Describe applicable training or expertise. > What is their status (on alert/standby, mobilizing, on site and ready, etc.)? > When will they arrive at the field/spill site?	E. When is deterrence/hazing expected to begin (be as accurate as possible)?	continued on next page

2. Secondary Response Strategy— Ragles, or Hazing/Deterrence (continued) Whales, Seals, Mainuses, Brown or Black Bears Hazing/Deterrence (continued) Whales, Seals, Or Polar Bears F. What equipment will be used for deterrence/ Paring (Steco buoys, propane cannons, horns, etc.)? P. What platform(s) will hazing/deterrence Pecconducted from (on foot, vessel, etc.)? P. What platform(s) will hazing/deterrence Pecconducted from (on foot, vessel, etc.)? P. Who will the responsible for documenting Paring efforts? S. Who will this information be conveyed to the IMT and wildlife agencies? H. Number of Wildlife Observers in the field (WPG Tactic Wildlife Reconnaissance)? Describe applicable training or expertise.	IV. Requ Part C – Supporting I	equest for Startup of V ing Information for Prc	IV. Request for Startup of Wildlife Response Strategies oporting Information for Proposed Response Strategies (continued)	gies jies (continued)	
What equipment will be used for deterrence/ betc.)? Yusing (Breco buoys, propane cannons, horns, etc.)? What platform(s) will hazing/deterrence be conducted from (on foot, vesse), etc.)? Will aircraft, including UAS, be used to haze wildlife? Who will be responsible for documenting hazing efforts? How will this information be conveyed to the IMT and wildlife agencies? Whumber of Wildlife Observers in the field (WPG Tactic Wildlife Reconnaissance)? Describe applicable training or expertise.	2. Secondary Response Strategy – Hazing/Deterrence (continued)	Migratory Birds, Eagles, or Non-Migratory Birds	Sea Otters, Walruses, or Polar Bears	Whales, Seals, Sea Lions, Porpoises, or Dolphins	Brown or Black Bears, Ungulates, or Furbearers
l l	What equipment will be used for deterrence/hazing (Breco buoys, propane cannons, horns, etc.)? What platform(s) will hazing/deterrence be conducted from (on foot, vessel, etc.)? Will aircraft, including UAS, be used to haze wildlife?				
	I				

	Brown or Black Bears, Ungulates, or Furbearers					71 3. 51 3. CT
ies ies (continued)	Whales, Seals, Sea Lions, Porpoises, or Dolphins					
uest for Startup of Wildlife Response Strategies Information for Proposed Response Strategies (continued)	Sea Otters, Walruses, or Polar Bears					
IV. Request for Startup of Wildlife Response Strategies porting Information for Proposed Response Strategies	Migratory Birds, Eagles, or Non-Migratory Birds					
IV. Requ Part C – Supporting	3. Tertiary Response Strategy – Capture, Transport, Stabilization, Rehabilitation (continued)	C. When is capture expected to begin (be as accurate as possible)?	D. How will wildlife be transported from the field to a stabilization/rehabilitation facility? Include all if multiple.	E. When are transport capabilities expected to be operational (specify as close as possible)?	F. Describe any stabilization of wildlife that may occur during transport, including who will do so and their applicable training or expertise.	continued on next page

STARTUP Wildlife Response Plan	IV. Request for Startup of Wildlife Response Strategies Part C – Supporting Information for Proposed Response Strategies (continued)	Brown or Black Bears, Ungulates, or Furbearers		
		Whales, Seals, Sea Lions, Porpoises, or Dolphins		
		Sea Otters, Walruses, or Polar Bears		
		Migratory Birds, Eagles, or Non-Migratory Birds		
	IV. F Part C – Suppor	3. Tertiary Response Strategy – Capture, Transport, Stabilization, Rehabilitation (continued)	G. Will a temporary stabilization facility be set up? If so, ➤ Where will it be located? ➤ When will it be fully operational?	H. Where will wildlife be held until stabilization or rehabilitation facilities are operational?

Page 14 of 17 Wildlife Protection Guidelines version 2020.1

When will the cleaning and rehabilitation facility be fully operational?

STARTUP Wildlife Response Plan

V. Wildlife Agency Permits and Authorizations for Proposed Response
This section to be filled out by wildlife agencies.
Instructions: For each species group checked, agencies should indicate permit or authorization status using one or more of these: Initiated (ESA section 7 consultation only);
Pending (include estimated time of completion); Issued (include permit number); Emergency authorization provided (verbal or email approval, hard copy of permit will
follow); Not applicable or not required for proposed activities; or Other (include comments).
Response activities for each species group as proposed in Section IV of this form may begin as soon as all necessary permits

N/A NMFS MMHSRP request
NMFS MMHSRP request
ADF&G Wildlife Response Permit
ADF&G Wildlife Response Permit
ADF&G Wildlife Response Permit
ADF&G Wildlife Response Permit
N/A
N/A
N/A
N/A USFWS MMPA section 112(c) LOA USFWS MMPA section 112(c) LOA USFWS MMPA section 112(c) LOA USFWS Migratory Bird Rehab Permit USFWS Eagle Depredation Permit N/A N/A N/A NMFS MMHSRP request
NMFS MMHSRP request
NMFS MMHSRP request
ADF&G Wildlife Response Permit
N/A
N/A
N/A NMFS ESA section 7 consultation USFWS MMPA section 112(c) LOA USFWS MMPA section 112(c) LOA USFWS MMPA section 112(c) LOA USFWS Eagle Depredation Permit ADF&G Wildlife Respo Permit JSFWS Migratory Bird Salvage Permit ADF&G Wildlife Response Permit USFWS ESA OLE authorization NMFS MMHSRP request USFWS ESA OLE authorization USFWS OLE authorization USFWS permit USFWS OLE authorization USFWS permit USFWS OLE authorization Polar bears Whales o s Migratory birds Sea otters Bald or golden

Wildlife Protection Guidelines version 2020.1

Page 15 of 17

STARTUP Wildlife Response Plan

	VI. Additional Conditions
	This section to be filled out by wildlife agencies.
	t check each applicable condition and write in any additional conditions or approvals.
	7 consultations will include protection measures, restrictions, or conditions for the adhered to. Additional conditions for the following activities include:
oroposed activities that must be	adhered to. Additional conditions for the following activities include.
Primary Response Strategies —	Carcass Collection
	editeds contection
ш	
Secondary Response Strategies	- Hazing/Deterrence
	ies are not inadvertently hazed, active hazing/deterrence must cease if the
	in m (ft) of the spill site or areas where hazing is proposed:
iono ining species are inin	(i., or the spin site of areas where nazing is proposed.
Hazing may not resume ur	ntil these species have left the area of their own accord.
☐ Hazing/deterrence may no	ot occur in areas where molting waterfowl are observed.
	ot occur within m (ft) of
	to
	to USFWS as soon as possible at 907-242-6893
(USFWS Alaska Region Spil	
	to NMFS as soon as possible at 877-925-7773
(Alaska Marine Mammal S	
☐ Hazing/deterrence activiti	es must be monitored by one or more Wildlife Observers (see WPG Tactic Wildlife
Reconnaissance), as neede	ed.
Tertiary Response Strategies –	Capture, Transport, Stabilization, and Rehabilitation
☐ Report observations of	to
	to USFWS as soon as possible at 907-242-6893
(USFWS Alaska Region Spi	ll Response Team).
☐ Report observations of	to NMFS as soon as possible at 877-925-7773
(Alaska Marine Mammal S	
☐ Tertiary response activities	s must be monitored by a Wildlife Observer (see WPG Tactic Wildlife
Reconnaissance).	
⊔	

Wildlife Protection Guidelines version 2020.1

Page 16 of 17

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK ACS Tech. Manual Vol. 1,12/20 NOTE: All values given on these pages are for planning purposes only.

Startup Wildlife Response Plan (from WPG, 2020) (Page 18 of 18) TACTIC W-1A

Wildlife Protection Guidelines version 2020.1

Page 17 of 17

l. Ir	cident Summary	
Incident Name:	Date / Time Prepared:	,
Incident Location:	Operational Period Date From: /	/ / Time: To: /
Prepared By (print):	Affiliation:	ICS Position:
☐ Amendment/update (all previous versions must b	e attached)	I
	Attachments:	
 □ Location map/sketch (ICS 201) or narrative □ Incident Status Summary (ICS 209) or narrative □ Resources at Risk (ICS 232) □ ESA section 7 consultation documents □ Completed Wildlife Observation Forms □ Other 	☐ Pre-Issued USFWS pe Permit No.) or autho	fildlife Response Permit(s) ermits (attach first page with orizations chorizations (attach first page wit
II. State and Federal On	Scene Coordinator Response to	Request
State On Scane Coordinator's decisi		
State On-Scene Coordinator's decision	n regarding proposed wildlife re	esponse activities:
Time Received: Concur with wildlife agencies.	Date Received:	esponse activities:
Time Received: Concur with wildlife agencies. Do not concur for the following reason(s): Signature:	Date Received:	esponse activities:
Time Received: Concur with wildlife agencies. Do not concur for the following reason(s): Signature:		esponse activities:
Time Received: Concur with wildlife agencies. Do not concur for the following reason(s): Signature:	Date Received:	
Time Received: Concur with wildlife agencies. Do not concur for the following reason(s): Signature: Time:	Date Received:	
Time Received: Concur with wildlife agencies. Do not concur for the following reason(s): Signature: Time: Federal On-Scene Coordinator's decise	Date Received: Date: On regarding proposed wildlife r	
Time Received: Concur with wildlife agencies. Do not concur for the following reason(s): Signature: Time: Federal On-Scene Coordinator's decis Time Received: Concur with wildlife agencies.	Date: On regarding proposed wildlife r Date Received:	

Comprehensive Wildlife Response Plan					
III. Wildlife Agency Response to Request					
ADF&G Recommendation/Decision:					
 Approve requested activities as proposed 					
 Approve requested activities as amended 					
☐ Deny requested activities for the following reason(s):					
Signature:	Date:	Time:			
Signature.	Date:	Time.			
USFWS Recommendation/Decision:	'				
☐ Approve requested activities as proposed					
☐ Approve requested activities as amended					
☐ Deny requested activities for the following reason(s):					
- '					
Signature:	Date:	Time:			
NMFS Recommendation/Decision:					
 Approve requested activities as proposed 					
 Approve requested activities as amended 					
\square Deny requested activities for the following reason(s):					
Signature:	Date:	Time:			

Acronyms in Comprehensive WRP ADF&G = Alaska Department of Fish and Game NRDAR = Natural Resource Damage Assessment and BIA = Biologically Important Area (https://coast.noaa.gov/ Restoration digitalcoast/data/biologicallyimportantareas.html) OLE = Office of Law Enforcement DPS = Distinct Population Segment OSRO = Oil Spill Removal/Recovery Organization ESA = Endangered Species Act PRAC = Primary Response Action Contractor ICS = Incident Command System RP/PRP = Responsible Party/Potential Responsible Party¹ IMT = Incident Management Team UAS = unmanned aerial/aircraft system, "drones" USFWS = U.S. Fish and Wildlife Service LOA = Letter of Authorization MMHSRP = Marine Mammal Health and Stranding Response WPG = Wildlife Protection Guidelines for Oil Spill Response in Program Alaska MMPA = Marine Mammal Protection Act WRP = Wildlife Response Plan

Wildlife Protection Guidelines version 2020.1

NMFS = National Marine Fisheries Service

Page 2 of 16

^{1 &}quot;RP/PRP" includes any entity contracted by the RP/PRP (or their ORSO/PRAC for the response) and is intended to include the RP/PRP, their contractors, the permittee, or whomever is directly responsible for carrying out this plan.

IV. Wildlife Information and Proposed Response Strategies: Part A - Non-ESA-listed Species Groups

This section to be filled out by RP/PRP.

Instructions: 1 and 2: Use field observations from the spill area or pre-existing data sources if no field data are available. 3: Check proposed response strategies for each species or species group in cooperation with available experts and agency representatives. Part A is only for species not listed under the ESA.

1. Is a species or species group		2. If YES, list specific species information:	3. Identify Proposed Response Strategies			
known or expected to be present in the spill area?	•	2. If 123, list specific species information.	Primary -	Seco	ondary 	Tertiary
	1	1	Carcass Collection	Haze/ Deter	Pre- emptive Capture	Capture and Rehab
Species Group	Yes	Species, numbers (estimated or observed), and location relative to spill, etc.	Yes	Yes	Yes	Yes
Bald or golden eagles						
Raptors						
Waterfowl						
Diving ducks						
Shorebirds						
Seabirds						
Passerines						
Non-migratory birds						
Brown or black bears						
Ungulates (moose, deer, caribou, etc.)						
Small furbearers (fox, muskrat, river otter, etc.)						
Wolves						
Northern sea otters (Southcentral or Southeast Alaska stocks)						
Walrus						
Harbor, spotted, or ribbon seals						
Northern fur seals						
Steller sea lions Eastern DPS						
Minke, killer, gray, beluga, or humpback whales (non-ESA-listed)						
Dolphins or porpoises						
Invertebrates				N/A	N/A	N/A
Fish or shellfish				NA	N/A	N/A
Other						

Wildlife Protection Guidelines version 2020.1

Page 3 of 16

Comprehensive Wildlife Response Plan

IV. Wildlife Information and Proposed Response Strategies: Part B - ESA-listed Species

This section to be filled out by RP/PRP.

Instructions: 1 and 2: Use field observations from the spill area or pre-existing data sources if no field data is available. 3: Identify the proposed response strategies for each species in cooperation with available experts and agency representatives.

Part B is for species listed under the ESA.						
Is a species known or expected to be present in the spill area?		2. If YES, list specific species information:	3. Identify Proposed Response Strategies			
			Primary —	Seco	ondary —	Tertiary —
			Carcass Collection	Haze/ Deter	Pre- emptive Capture	Capture and Rehab
Species	Yes	Numbers (estimated or observed), and location relative to spill, etc.	Yes	Yes	Yes	Yes
Steller's eider						
Spectacled eider						
Short-tailed albatross						
Eskimo curlew						
Northern sea otter Southwest Alaska DPS						
Polar bear						
Steller sea lion Western DPS						
Ringed seal						
Bearded seal						
Beluga whale Cook Inlet DPS						
Blue whale						
Bowhead whale						
Fin whale						
North Pacific right whale						
Sei whale						
Sperm whale						
Humpback whale Mexico or Western North Pacific DPS						
Gray whale Western North Pacific DPS						
Wood Bison						
Leatherback turtle						
Green turtle						
Loggerhead turtle						
Other						

Wildlife Protection Guidelines version 2020.1

Page 4 of 16

V. Other Primary Response Actions

This section to be filled out by the RP/PRP.

Instructions: Check any primary response actions underway or previously taken: (1) to protect wildlife and/or wildlife habitat, and (2) which may affect the proposed wildlife response activities. Describe any additional actions underway or previously taken.

 $\hfill \square$ Control and contain the source of the spill.

☐ Mechanical recovery (boom, skimmers, etc.).

☐ Sensitive area protection (booming of anadromous streams, marine mammal haulouts, seabird rookeries, etc.).

☐ Non-mechanical recovery (dispersants or *in-situ* burning)

 $\ \square$ Removal of oiled debris (kelp, driftwood, etc.)

T 011

☐ Other: ____

Wildlife Protection Guidelines version 2020.1

Page 5 of 16

Comprehensive Wildlife Response Plan

VI. Carcass Collection Plan

This section to be filled out by the RP/PRP.

Instructions: Include information for each species or species group checked in Section IV, Parts A and B. Any differences between each species group must be clearly articulated. If more space is needed, attach a separate Word® document referencing appropriate section, number, and species group (e.g., Section VI. 10. Birds) or reference and include applicable attachments.

- 1. List pre-existing permits and authorizations, and those that were obtained for carcass collection through the Startup WRP process.
- 2. How will oiled carcasses be observed and reported to Unified Command and wildlife agencies (for example, actively searching collection teams, carcasses reported through opportunistic field observations)?
- 3. Describe or indicate on a map where carcasses will be searched for or collected, or where opportunistic observations will occur.
- 4. Who will collect oiled carcasses (RP/PRP staff, contractors, agency staff, OSRO/PRAC)? List all if multiple.
- 5. Describe carcass collection teams: How many, whether they have other duties (for example, opportunistic/as needed vs. sole duty for large numbers of carcasses), number of collectors and their ICS positions (e.g., Carcass Collection Task Force member).
- 6. What supplies and equipment will be used; where is it stored; how and when will it get to the field?
- 7. Describe the data collection plan and any forms that will be used to document carcass collection activities.
- 8. How will carcasses be transported from the field (boat, plane, vehicle, etc.)?
- 9. How and where will carcasses be stored until handed over to agencies (for example, freezer space, refrigerator, coolers at staging area, morgue)?
- 10. Where will a morgue be set up (staging area, warehouse, etc.)? When will it be operational? How will the morgue be secured and who will have access to it?
- 11. Has a carcass custodian from one of the wildlife agencies been requested (e.g., submitted ICS form 213RR)? Who will receive the carcasses piror to the agency custodian being on site?
- 12. Describe in detail any deviations that will be made from the WPG Tactic **Collection of Small Carcasses and Documentation of Large Carcasses**.
- 13. Describe any additional details necessary for Incident Command to fully understand implementation of this plan.
- 14. How has this plan been coordinated with NRDAR Trustees?

Wildlife Protection Guidelines version 2020.1

Page 6 of 16

Summary of Wildlife Agency Comments: Section VI. Carcass Collection Plan Instructions for agency representatives: Indicate the number in Section VI to which your comment refers. Include recommended language for additions, deletions, requests for additional details, or other comments. ADF&G comments: USFWS comments: NMFS comments:

Wildlife Protection Guidelines version 2020.1

Page 7 of 16

Comprehensive Wildlife Response Plan

VII. Hazing/Deterrence Plan

This section to be filled out by the RP/PRP.

Instructions: Include information for each species or species group checked in Section IV, Parts A and B. Any differences between each species group must be clearly articulated. If more space is needed, attach a separate Word® document referencing appropriate section, number, and species group (e.g., Section VII. 2. Birds) or reference and include attachments.

- 1. List pre-existing permits and authorizations, and those that were obtained for hazing/deterrence through the Startup WRP process.
- 2. Which species/species groups are intended to be hazed/deterred?
- 3. What non-target species might be in the area that could be inadvertently hazed/deterred? What methods will be employed to avoid hazing/deterrence of non-target species?
- 4. Describe or indicate on a map areas where wildlife will be deterred/hazed from (for example, priority response areas or as wildlife are encountered). Describe nearby suitable habitat where wildlife are intended to be hazed to, including distance and direction from their current location.
- 5. Who will be conducting hazing/deterrence activities (RP/PRP staff, OSRO/PRAC, contractor, other)? List all if multiple. Describe applicable training or expertise, including affiliation, names (if known), and person in charge (with ICS position) of deterrence activities. When will they arrive at the field/spill site?
- 6. Describe the method and type of equipment that will be used for each species group. Include the platform(s) hazing/deterrence will be conducted from (on foot, boat, etc.) and if any aircraft, including UAS, will be used to haze/deter wildlife.
- 7. Who (name or ICS position) will be responsible for documenting the success/failure of hazing efforts (e.g., a Wildlife Observer (see WPG Tactic **Wildlife Reconnaissance**), one of the persons conducting hazing, etc.)?
- 8. Describe the documentation/communication plan. What information will be documented, by whom, and how often will it be communicated to the IMT?
- 9. Describe what next steps will be taken if hazed species inadvertently become oiled.
- 10. Describe or attach any additional details necessary for Incident Command to fully understand implementation of this plan, such as guidance documents, tactic descriptions, or other instructions.

Wildlife Protection Guidelines version 2020.1

Page 8 of 16

Summary of Wildlife Agency Comments: Section VII. Hazing/Deterrence Plan
Instructions for agency representatives: Indicate the number in Section VII to which your comment refers. Include recommended language for additions, deletions, requests for additional details, or other comments.
ADF&G comments:
USFWS comments:
NMFS comments:

Wildlife Protection Guidelines version 2020.1

Comprehensive Wildlife Response Plan

VIII. Pre-emptive Capture Plan

This section to be filled out by the RP/PRP.

Instructions: Include information for each species or species group checked in Section IV, Parts A and B. Any differences between each species group must be clearly articulated. If more space is needed, attach a separate Word® document referencing appropriate section, number, and species group (e.g., Section VIII. 1. Birds) or reference and include attachments.

- 1. Who is capturing wildlife? Provide affiliation and applicable training. Names of individuals must be provided for the proposed capture of any marine mammals, eagles, or ESA-listed species.
- 2. Describe all aspects of wildlife transportation. How will each species be transported from the field, where are they being transported to (for example, stabilization facility, temporary holding location, proposed release site)?
- 3. Describe the stabilization facility or temporary holding location/facility. Provide the name of the individual or ICS position in charge of the chain-of-custody paperwork at the stabilization facility. Attach a plan describing the detailed care of each species (e.g., feeding, nutrition, temperature control, etc.)
- 4. Provide the name and affiliation of the veterinarian(s) in charge of monitoring captured wildlife.
- 5. Describe why the release site was chosen (for example, location or habitat characteristics).
- 6. Provide the name, ICS position, and contact information for the person responsible for writing a release plan (e.g., release date and location, appropriate tagging/banding or final disposition of the animal, etc.) and coordinating review of the plan with the appropriate wildlife agency.
- 7. Describe or attach any additional details necessary for Incident Command to fully understand implementation of this plan, such as guidance documents, tactic descriptions, or other instructions.

Wildlife Protection Guidelines version 2020.1

Page 9 of 16

Page 10 of 16

Summary of Wildlife Agency Comments: Section VIII. Pre-emptive Capture Plan
Instructions for agency representatives: Indicate the number in Section VIII to which your comment refers. Include recommended language for additions, deletions, requests for additional details, or other comments.
ADF&G comments:
USFWS comments:
NMFS comments:

Wildlife Protection Guidelines version 2020.1

Page 11 of 16

Comprehensive Wildlife Response Plan

IX. Capture, Transport, Stabilization, Rehabilitation, and Release Plan

This section to be filled out by the RP/PRP.

Instructions: Include information for each species or species group checked in Section IV, Parts A and B. Any differences between each species group must be clearly articulated. <u>If more space is needed, attach a separate Word® document referencing</u> appropriate section, number, and species group (e.g., IX. 1. Seals) or reference and include attachments.

- 1. List pre-existing permits and authorizations, and those that were obtained for capture, transport, stabilization, and rehabilitation through the Startup WRP process.
- 2. Provide affiliation and applicable training of wildlife capture personnel. Names of individuals must be provided for the proposed capture of any marine mammals, eagles, or ESA-listed species. When will they arrive at the site?
- 3. Describe all aspects of wildlife transportation. How will each species be transported from the field, where are they being transported to (for example, stabilization facility, temporary holding location, proposed release site)?
- 4. Describe the temporary stabilization facility(ies) if one or more will be used. Provide the name of the individual or ICS position in charge of the chain-of-custody paperwork at each stabilization facility.
- 5. Where is the cleaning and rehabilitation facility(ies)?
- 6. Provide the name and affiliation of the veterinarian(s) in charge of cleaning and rehabilitation of oiled wildlife.
- 7. Provide the name of the individual or ICS position in charge of the chain-of-custody paperwork at the rehabilitation facility.
- 8. Describe fresh/marine water sources and daily capacity in gallons (fresh and/or marine) for cleaning and holding of wildlife.
- 9. Describe how waste and wastewater is being handled, including daily capacity, for (a) oily water, (b) wastewater with natural animal contaminants (fecal matter, skin, fur, food, fish, etc.), and (c) biomedical waste, including drugs.
- 10. Describe how wildlife will be held while in rehabilitation and estimated time individuals in each species group will remain in rehabilitation.
- 11. Describe disposal or storage for euthanized or deceased animals (e.g., will they be transported to the morgue location outlined in Section VI, will another morgue be established at rehabilitation facility, will animal be transported to wildlife agency). Attach euthanasia plan or describe in adequate detail here.
- 12. Provide the name, ICS position, and contact information for the person/people responsible for writing a release plan (e.g., release date and location, appropriate tagging/banding or final disposition of the animal, etc.) and coordinating review of the plan with the appropriate wildlife agency.
- 13. Describe or attach any additional details necessary for Incident Command to fully understand implementation of this plan, such as guidance documents, tactic descriptions, or other instructions.

Wildlife Protection Guidelines version 2020.1

Page 12 of 16

Comprehensive \	Wildlife	Response Plan
-----------------	----------	---------------

Summary of Wildlife Agency Comments: Section IX. Capture, Transport, Stabilization, Rehabilitation, and Release Plan Instructions for agency representatives: Indicate the number in Section VIII to which your comment refers. Include recommended language for additions, deletions, requests for additional details, or other comments. ADF&G comments: **USFWS** comments: NMFS comments:

Wildlife Protection Guidelines version 2020.1

Page 13 of 16

Comprehensive Wildlife Response Plan

X. Wildlife Agency Permits and Authorizations for Proposed Response	This section to be filled out by wildife agencies.	or each species group checked, agencies should indicate permit or authorization status using one or more of these: Initiated (ESA section 7 con	
X. Wildlife Agen	Thi	or each species group checked, agencies should indi	

onsultation only); permit will copy of per Instructions: For each species group checked, agencies should indicate permit or addingtion states of addingtion (include estimated time of completion); Issued (include permit number); Emergency authorization follow); Not applicable or not required for proposed activities; or Other (include comments).

Response activities for each species group as proposed in Sections VI – IX of this form may be for each species group as proposed in Sections VI – IX of this form may be

Species or	CARCASS COLLECTION	0	ECTION HAZING/DETERRENCE		CAPTURE, TRANSPORT, STABILIZATION, & REHABILITATION	ATION,
Species Group	Permit/Authorization	Status	Permit/Authorization	Status	Permit/Authorization	Status
Ī	USFWS ESA section 7 consultation		USFWS ESA section 7 consultation		USFWS ESA section 7 consultation	
Threatened or and angered or	NMFS ESA section 7 consultation		NMFS ESA section 7 consultation		NMFS ESA section 7 consultation	
	USFWS ESA OLE authorization					
	USFWS Migratory Bird Salvage Permit		ADF&G Wildlife Response		USFWS Migratory Bird Rehab	
Migratory birds	USFWS OLE authorization		Permit		Permit	
2000	USFWS permit		USFWS Eagle Depredation		USFWS Eagle Depredation	
paid of golderi eagles	USFWS OLE authorization		Permit		Permit	
3	USFWS permit		USFWS MMPA section 112(c)		USFWS MMPA section 112(c)	
Sea Offers	USFWS OLE authorization		LOA		LOA	
2001 rale/M	USFWS permit		USFWS MMPA section 112(c)		USFWS MMPA section 112(c)	
COCH IIDAA	USFWS OLE authorization		LOA		LOA	
	USFWS permit		USFWS MMPA section 112(c)		USFWS MMPA section 112(c)	
rolar pears	USFWS ESA OLE authorization		LOA		LOA	
Whales	NMFS MMHSRP request		NMFS MMHSRP request		NMFS MMHSRP request	
Seals	NMFS MMHSRP request		NMFS MMHSRP request		NMFS MMHSRP request	
Sea lions	NMFS MMHSRP request		NMFS MMHSRP request		NMFS MMHSRP request	

Wildlife Protection Guidelines version 2020.1

ACS Tech. Manual Vol. 1,12/20

NOTE: All values given on these pages are for planning purposes only.

NOTE: All values given on these pages are for planning purposes only.

Comprehensive Wildlife Response Plan

XI. Additional Co	onditions
This section to be filled out	by wildlife agencies.
Instructions: Wildlife agencies must check each applicable condition	and write in any additional conditions or approvals.
Permits, LOAs, and ESA section 7 consultations will include pro	·
proposed activities that must be adhered to. Additional conditi	ons for the following activities include:
Britanama Brancona Stantaniana Canana Calleghian	
Primary Response Strategies – Carcass Collection	
Ш	·
Secondary Response Strategies – Hazing/Deterrence	
☐ To ensure non-target species are not inadvertently hazed	, active hazing/deterrence must cease if the following
species are within m (ft) of the spill site	
Hazing may not resume until these species have left the a	area of their own accord.
☐ Hazing/deterrence may not occur in areas where molting	waterfowl are observed.
☐ Hazing/deterrence may not occur within m (
☐ Report observations of	to
☐ Report observations of	to USFWS as soon as possible at 907-242-6893
(USFWS Alaska Region Spill Response Team).	
☐ Report observations of(Alaska Marine Mammal Stranding Network).	to NMFS as soon as possible at 877-925-7773
☐ Hazing/deterrence activities must be monitored by one of	r more Wildlife Observers (see WPG Tactic Wildlife
Reconnaissance) as needed.	Thore whalle observers (see WFG factic whalle
<u>Tertiary Response Strategies – Capture, Transport, Stabilizatio</u>	n, and Rehabilitation
☐ Report observations of	to
☐ Report observations of	to USFWS as soon as possible at 907-242-6893
(USFWS Alaska Region Spill Response Team).	
Report observations of	to NMFS as soon as possible at 877-925-7773
(Alaska Marine Mammal Stranding Network).	
 Tertiary response activities must be monitored by a Wildle Reconnaissance). 	ite Observer (see WPG Tactic Wildlife
·	

Wildlife Protection Guidelines version 2020.1 Page 15 of 16

Comprehensive Wildlife Response Plan

XII. Worksheet for Operations Section and Field Personnel

This section to be filled out by the RP/PRP.

Instructions: List conditions, stipulations, and protection measures of permits and authorizations as they are finalized and issued. This Worksheet is intended to help convey pertinent details of authorized wildlife response activities from the Environmental Unit to Operations and field personnel. The Environmental Unit Lead or their designee should read and review permits, authorizations, and ESA section 7 consultation information as they are issued/finalized, and include pertinent protection measures, stipulations, and other conditions for Operations to inform and direct field personnel (e.g., in ICS 204s). Some of this information may be obtained from Section VII of the Startup WRP. This Worksheet does not replace or negate any information found in permits and authorizations. Wildlife agencies may assist with this, but the permittee or RP/PRP is ultimately responsible for all actions conducted under the authority of each issued permit or authorization.

Comprehensive Wildlife Response Plan – Version 2020.1

END OF COMPREHENSIVE WILDLIFE RESPONSE PLAN

Wildlife Protection Guidelines version 2020.1

Page 16 of 16

WILDLIFE AGENCY POINTS OF CONTACT

U.S. Fish and Wildlife Service (USFWS)

Migratory bird capture and salvage, eagles, sea otters, walruses, polar bears, salmon, Endangered Species Act (ESA) section 7 consultation

Statewide contacts:

Primary:

Alaska Region Spill Response Team (907) 242-6893

fwsakspillresponse@fws.gov

Alternate:

Angela Matz (907) 750-8527 angela_matz@fws.gov

National Marine Fisheries Service (NMFS) / NOAA Fisheries

Whales, porpoises, dolphins, seals, sea lions, marine fish, ESA section 7 consultation Statewide contacts:

Primary:

Sadie Wright (907) 586-7630

sadie.wright@noaa.gov

Alternate:

David Gann (907) 586-7285

david.gann@noaa.gov

Alaska Department of Fish and Game (ADF&G)

Migratory bird hazing, terrestrial mammals, anadromous fish, freshwater fish

ADF&G Contacts by Area Contingency Plan, Geographic Area of Responsibility, and Office Location (see map on previous page).

Area Contingency Plan(s)	Office Location and Geographic Area of Responsibility	Contact Information
Inland Prince William Sound Western and Arctic Alaska	Anchorage Southcentral and southwest Alaska, Prince William Sound, Cook Inlet, Kodiak	Jeanette Alas (907) 267-2805 jeanette.alas@alaska.gov
	Habitat main office (907) 267-2342	Scott Graziano (907) 267-2143 scott.graziano@alaska.gov
Inland Prince William Sound	Trans-Alaska Pipeline System, Valdez Marine Terminal	Lee McKinley (907) 269-6411 <u>lee.mckinley@alaska.gov</u>
Inland Western and Arctic Alaska	Fairbanks North Slope, interior, Arctic, northwest Alaska	Todd Nichols (907) 459-7363 todd.nichols@alaska.gov
	Habitat main office (907) 459-7289	Jack Winters (907) 459-7285 jack.winters@alaska.gov
Southeast	Douglas Southeast Alaska (except Prince of Whales and Ketchikan)	Greg Albrecht (907) 465-6384 greg.albrecht@alaska.gov
	Habitat main office (907) 465-4105	Kate Kanouse (907) 465-4290 kate.kanouse@alaska.gov
Southeast	Craig Prince of Whales, Ketchikan	Mark Minnillo (907) 826-2560 mark.minnillo@alaska.gov
Inland	Soldotna Kenai Peninsula, West Cook Inlet	Brian Blossom (907) 714-2481 brian.blossom@alaska.gov
	Habitat main office (907) 714-2475	
Inland	<u>Palmer</u> Mat-Su	Sarah Wilber (907) 861-3206 sarah.wilber@alaska.gov
	Habitat main office (907) 861-3200	Jonathan Kirsch (907) 861-3203 jonathan.kirsch@alaska.gov

ADF&G representatives can be reached outside of normal business hours through the SOSC for each incident.

Forms for ESA Section 7 Consultation (from WPG, 2020) (Page 2 of 12) TACTIC W-1D

ALASKA REGION SPILL RESPONSE EMERGENCY ENDANGERED SPECIES ACT CONSULTATION INITIATION

This form is intended to initiate and document emergency consultation with the National Marine Fisheries Service and U.S. Fish & Wildlife Service (the Services) for species listed, and critical habitat designated under. the Federal Endangered Species Act (ESA). This form is intended to streamline and standardize initiation of the ESA consultation process, when emergency spill response activities may affect federally listed species and/or critical habitat. This form is not intended to alter any provisions of the Inter-agency Memorandum of Agreement Regarding Oil Spill Planning and Response Activities signed by six federal agencies in 2001.1

Emergency Contact: The Services should be contacted as soon as possible by telephone and email at:

U.S. Fish & Wildlife Service	fwsakspillresponse@fws.gov	Cell: 907-242-6893	Alt: 907-750-8527
National Marine Fisheries Service	sadie.wright@noaa.gov	Off: 907-586-7630	Cell: 907-957-8147

The initial stages of emergency consultations can be done by phone, but must be followed as soon as possible by written correspondence; therefore, this form will be completed no later than 24 hours following notification of the emergency and transmitted via email regarding emergency spill response actions.

Instructions for Completing the Form

Pages 2-4: The Federal On-Scene Coordinator (FOSC) or FOSC Representative for ESA consultation, with assistance from the NOAA Scientific Support Coordinator (SSC), should fill out pages 2-4. All proposed initial response actions should be indicated, including any pre-approved practices to avoid or minimize impacts to listed species and critical habitats.

Pages 5-9: The Services will assist in determining the presence of ESA protected resources in the response area, but the initial checklist should be prepared by the FOSC (or designee). The Services will complete the initial effects assessment, considering the response actions and standard practices proposed. The Services may require additional information regarding proposed response actions and techniques when conducting this assessment. The Services will review the FOSC's determination of whether or not the proposed response tactics and actions will likely affect any listed species or critical habitat, check the appropriate and applicable protection measures, and provide recommendations to avoid and minimize any potentially adverse effects. The Services will strive to transmit the completed form to the FOSC within 24 hours of receipt.

Awaiting a response from the Services should not delay emergency response activities.

The FOSC will implement as many protection measures as feasible without delaying the response. The Services must be notified if actions and techniques change as the response progresses and will be available for further coordination and consultation as requested.

Once the emergency response actions are completed, the Services will be notified and the Federal OSC and the Service(s) will jointly review and evaluate the effects of response activities on listed species and/or critical habitat, using the post response consultation close-out form. If the response resulted in adverse effects, formal consultation will be initiated. If no adverse effects occurred, ESA consultation is complete.

Last Revised 8/24/2020 1 of 7

ALASKA REGION SPILL RESPONSE

	CONSULTATION IN			
TIME & DATE OF TRA	NSMITTAL:			
FROM: FOSC	NAME:		Off.:	
U.S. Coast Guard	EMAIL:		Cell:	
TO:	NAME: U.S. Fish & Wildlife Service		Cell:	907-242-6893
usfws \square	EMAIL: fwsakspillresponse@fws.gov	/	Alt.:	907-750-8527
	NAME: Sadie Wright		Off::	907-586-7630
NMFS	EMAIL: sadie.wright@noaa.gov		Cell:	907-957-8147
INCIDENT NAME: DATE OF INCIDENT: LOCATION INFORMA	ΠΟΝ:			
CENTER LOCATION (N	IAD 83) LATITUDE:		LONGIT	UDE:
LOCATION TYPE				

CENTER LOCATION (NAD	0 83)	LATITUDE:	LONGITUDE
LOCATION TYPE Check all that apply		NAME/LAN	DMARKS
Port/Industrial			
Riverine/Wetland			
Inshore/Estuarine			
Nearshore/Coastal			
Offshore/EEZ			

DESCRIPTION OF INCIDENT: Be as complete as possible. Include information on the type and amount of material spilled, initial impacts, and other relevant details.

Last Revised 8/24/2020 2 of 7

¹ Inter-agency Memorandum of Agreement Regarding Oil Spill Planning and Response Activities Under the Federal Water Pollution Control Act's National Oil and Hazardous Substances Pollution Contingency Plan and the Endangered Species Act. 2001.

ALASKA REGION SPILL RESPONSE EMERGENCY ENDANGERED SPECIES ACT CONSULTATION INITIATION

Response Actions (check all that apply)

ACTIONS / TACTICS ²	Checl	k Date	DETAILS / NOTES
Common Response Actions			
Boom			
Sorbents/Snares			
Skimming/vacuuming			
Barriers/Berms/Fences			
Trenching			
Flooding/Flushing			
Oiled Vegetation Removal			
Debris Removal (oiled & unoiled)			
Sediment Removal/Mixing			
Vessel/Container Removal			
Explosives			
Subpart J Countermeasures			
Dispersants			
In Situ Burn			
Solidifiers			
Surface Washing Agents			
Wildlife Response Tactics			
Carcass Collection			
Wildlife Hazing			
Pre-emptive Capture			
Wildlife Capture/Rehab			
Other Options for Consideration	n		

Last Revised 8/24/2020 3 of 7

ALASKA REGION SPILL RESPONSE EMERGENCY ENDANGERED SPECIES ACT CONSULTATION INITIATION

Pre-Identified GRS, POR, and PS Sites³

TYPE	LOCATIONS(S) SITE IDENTIFIER	REFERENCE FOR PRE-APPROVAL (ACP, ESA sec. 7, etc.)
Example: GRS	Northeast Prince William Sound PWS NE- 27 Granite Cove	Prince William Sound Area Contingency Plan

³ GRS = Geographic Response Strategy, POR = Place of Refuge, PS = Priority Protection Site

Last Revised 8/24/2020 4 of 7

² As response (actions/tactics) changes, re-evaluation of the consultation is required.

ALASKA REGION SPILL RESPONSE EMERGENCY ENDANGERED SPECIES ACT CONSULTATION INITIATION

Protected Species Checklist⁴

		Critical Habitat	Response	Response
SPECIES ⁵ IN RESPONSE AREA	Chaole	in	Likely to	Not Likely to
Birds	Check	Response Area ⁶	Adversely Affect ⁷	Adversely Affect
	I			
Short-tailed albatross (STAL)				
Steller's eider (STEI)				
Spectacled eider (SPEI)				
Mammals				
Steller sea lion (STSL) (Western AK)				
Bowhead whale (BOWH)				
Cook Inlet beluga whale (CIBW)				
Ringed seal (RISE)				
Bearded seal (BESE)				
Fin whale (FIWH)				
Humpback whale (HUWH)				
Sperm whale (SPWH)				
Blue whale (BLWH)				
North Pacific right whale (NPRW)				
Sei whale (SEWH)				
Sea otter (SEOT) (Southwest AK)				
Polar bear (POBE)				
Other				

⁴ This table focuses on federally listed threatened or endangered species in coastal, estuarine, and inland areas that may be susceptible to oil spills, but does not identify all federally listed species that could be affected. Other federally listed species not listed in this table should be identified appropriately in rows listed under 'Other'.

Last Revised 8/24/2020 5 of 7

ALASKA REGION SPILL RESPONSE EMERGENCY ENDANGERED SPECIES ACT CONSULTATION INITIATION

Check all that apply ESA Protection Measures ⁸	Implemented? Y / N
Wildlife Observers	
Deploy Wildlife Observers ⁹ to monitor vessels and aircraft (flying below 1,500 feet over marine wat shoreline) involved in response. Observers expected to notify vessel captains/pilots about marine it to minimize impacts, and record sightings.	
All responders and Wildlife Observers shall report all sightings of healthy, oiled, or injured wildlife in the response area in real time to Wildlife Branch or Environmental Unit.	n or near
Collision Risk & Avoidance	·
Response vessel operators shall avoid close approach (<300-500 feet) to whales and pinnipeds in	the water.
Vessel speeds shall be reduced to <13 knots when marine mammals sighted within 1,000 feet.	
Implement vessel and aircraft no-entry buffer zones of 1,500 feet around known or observed marin concentration areas, including seal and sea lion haulouts and rookeries, and migration pathways.	ne mammal
Acoustic Disturbance / Noise	
Avoid revving engines or other loud in-water activities exceeding 180 decibels in the marine enviro Use quieter equipment when possible (e.g., use 4-stroke instead of 2-stroke boat motors).	nment.
Shoreside Activities (Harassment and Habitat Modification)	•
Implement 1,500 foot no-entry buffers around known or observed haulouts or rookeries to prevent responders from chasing animals into the water.	shoreside
Notify all shoreside responders to look for and avoid disturbing (1,500 foot buffer) hauled out pinning	peds.
Dispersant Use	
Wildlife Observers will be on all aircraft and vessels associated with dispersant application to ensu dispersant is not deployed on or near wildlife (Dispersant Use Plan states that dispersants will not within 500m of marine mammals).	
Limit the total amount of dispersant used in a single incident to minimize the risk to pelagic species prey.	s and their
Implement buffer zones around area of high wildlife concentrations (e.g., haulouts or rookeries) to exposure.	minimize
In-Situ Burns	
Avoid burns near wildlife concentration areas (e.g., pinniped haulouts or whale migratory routes) we numbers of wildlife are observed or expected to be present, unless wind conditions are expected to smoke plume away from the area of concern.	
Wildlife Observers will be present to locate species of concern near a proposed burn site, and mor throughout the activity to ensure that no wildlife approaches or becomes entrained in the fire boom wildlife will be reported to the Wildlife Branch or Environmental Unit.	

Last Revised 8/24/2020 6 of 7

⁵ Under the Endangered Species Act of 1973, as amended, the National Marine Fisheries Service (NMFS) is responsible for listed marine mammals other than sea otter, polar bear, and walrus; the U.S. Fish and Wildlife Service (USFWS) is responsible for listed migratory birds, sea otter, polar bear, and walrus.

⁶ USFWS critical habitat metadata can be found on USFWS ECOS Critical Habitat Portal page at: http://ecos.fws.gov/crithab/

⁷ Å "Likely to adversely affect" indication is a preliminary estimate based on available information, and is subject to change as more information is received by the Services.

⁸ Mitigation Measures, Reasonable & Prudent Measures (RPMs), Terms & Conditions, and Conservation Recommendations. Incident-specific mitigation measures are provided to the Unified Command by NMFS (through the emergency ESA section 7 consultation) to minimize the impact of oil spill response activities to species under NMFS's authority, including all of the ESA-species considered in the Unified Plan consultation. The RPMs included, along with their implementing terms and conditions, are designed to minimize the impact of incidental take that might otherwise result from the proposed action. NMFS concludes that the RPMs are necessary and appropriate to minimize or to monitor the incidental take of bowhead whales, humpback whales, Cook Inlet beluga whales, western DPS Steller sea lions, ringed seals, bearded seals, and salmon resulting from the proposed action.

⁹ Sometimes referred to as "Protected Species Observers."

ALASKA REGION SPILL RESPONSE
EMERGENCY ENDANGERED SPECIES ACT
CONSULTATION INITIATION

	REQUIRED ESA PROTECTION MEASURES Implemented? Y	′/N
Red	luce Probability of Exposure	
X	Train and educate. Ensure all USCG and EPA field deployed response personnel, involved with spill response in a manner which may result in incidental take, are given the information needed to enable them to properly assess and protect potentially affected listed species.	
X	The USCG and EPA shall, within their level of discretion and contracting limitations, include as part of any contractual agreement with third parties involved in spill response in a manner which may result in incidental take, terms requiring compliance with Mitigation Measures, Reasonable and Prudent Measures and their corresponding Terms and Conditions.	
X	Conduct Tiered Emergency Consultation with NMFS during incidents when it is determined that ESA-listed species under NMFS's jurisdiction may be affected by response activities.	
Imp	lement a Monitoring and Documentation Program	
	Document effects to listed species, their prey, and habitat used by listed species from the response methods: species affected; habitat area and type; and temporal affects.	

ADDITIONAL IMPLEMENTED ESA PROTECTION MEASURES

Last Revised 8/24/2020 7 of 7

USFWS #	

ALASKA REGION SPILL RESPONSE EMERGENCY ENDANGERED SPECIES ACT POST-RESPONSE CONSULTATION CLOSE-OUT

NMFS#

This document is intended to complete emergency consultation with the National Marine Fisheries Service and U.S. Fish & Wildlife Service (the Services) for species listed, and critical habitat designated under, the Federal Endangered Species Act (ESA). The information provided within is the final step in the request for concurrence that emergency spill response activities undertaken did not adversely affect federally listed species and/or critical habitat. This form is not intended to alter any provisions of the Inter-agency Memorandum of Agreement Regarding Oil Spill Planning and Response Activities signed by six federal agencies in 2001.¹

This post-response documentation should be completed and submitted to the Service(s) emergency contact as soon as possible after all response activities have been concluded.

Emergency Contact: The Services should be contacted as soon as possible by telephone and email at:

37	U.S. Fish & Wildlife Service	fwsakspillresponse@fws.gov	Cell: 907-242-6893	Alt: 907-750-8527
	National Marine Fisheries Service	sadie.wright@noaa.gov	Off: 907-586-7630	Cell: 907-957-8147

The Federal On-scene Coordinator (FOSC) and the Service(s) will jointly review and evaluate the effects of response activities on listed species and/or critical habitat. If the response resulted in adverse effects, formal consultation will be initiated. If no adverse effects occurred, ESA consultation is complete.

IMPORTANT

This consultation has been issued an Environmental Consultation Organizer identification number (ECO#) by NMFS which will remain open until NMFS consultation is complete.

This consultation has been issued an Environmental Online Conservation System – Tracking and Integrated Logging System (ECOS – TAILS) identification number by USFWS, which will remain open until USFWS consultation is complete.

Last Revised 8/20/2020 1 of 4

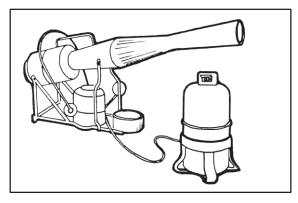
FOSC Signature

¹ Inter-agency Memorandum of Agreement Regarding Oil Spill Planning and Response Activities Under the Federal Water Pollution Control Act's National Oil and Hazardous Substances Pollution Contingency Plan and the Endangered Species Act. 2001.

NMFS #	U	SFWS #
ALASKA	A REGION SPILL RESPONSE EMERGENCY ENDAI POST-RESPONSE CONSULTATION CLOS	
TIME & DATE OF TR		
FROM: FOSC U.S. Coast Guard	NAME: EMAIL:	Off.: Cell:
TO:	NAME: U.S. Fish & Wildlife Service	Cell: 907-242-6893
USFWS	EMAIL: fwsakspillresponse@fws.gov	Alt.: 907-750-852
	NAME: Sadie Wright	Off:: 907-586-7630
NMFS 🗆	EMAIL: sadie.wright@noaa.gov	Cell: 907-957-814
DESCRIPTION OF F	RESPONSE: Fill in the information below as complete	ly as possible.
<u></u>	art or map showing the location of the incident	
☐ ph	otograph of the incident	
INCIDENT SUMMAR	RY (Describe the incident, briefly.)	
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)
RESPONSE ACTION	NS (Provide a brief summary of the actions taken in re	esponse to the incident.)

Forms for ESA Section 7	Consultation (from WPG	, 2020) (Page 10 of 12	:) TACTIC W-1D

NMFS#	USFWS #	
	ALASKA REGION SPILL RESPONSE EMERGENCY ENDANGERED SPECIES ACT POST-RESPONSE CONSULTATION CLOSE-OUT	
RESPONS	E TIMELINE (Outline the timeline for all response actions taken in response to the incident.)	
PROTECT	ION MEASURES (Describe all NMFS mitigation measures and recommendations, USFWS	
recommen	dations, and when they were incorporated.)	


Forms for ESA Section 7 Consultation (from WPG, 2020) (Page 12 of 12) TACTIC W-1D THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK

12-GAUGE SHOTGUN

PROPANE EXPLODER CANNON

15-MM PISTOL

The ACS inventory of wildlife hazing equipment includes:

- Passive excluders (balloons, reflector tape).
- · Propane exploder cannons.
- 15-mm single-shot pistol/launcher with 22-caliber caps, screamers, and bangers.
- 12-gauge single-shot shotgun with cracker shells, rubber bullets (bear deterrence), and slugs (bear protection).
- Electric fencing.

The ACS equipment is available upon notification 24 hours a day, but will be issued only to certified trained personnel (i.e., those that have completed the ACS wildlife training course). ACS maintains a list of such personnel.

FIREARM SAFETY

The 15-mm pistols and 12-gauge shotguns in ACS's hazing inventory must be handled properly to ensure the safety of all personnel. No one will be allowed to use ACS firearms without the appropriate training. Following are the primary safety precautions that should be taken when you are using any firearm:

- Never point the muzzle of the gun at anyone at anytime regardless of whether the gun is empty or loaded.
- Never put your finger on the trigger until you are ready to shoot.
- Never load the gun until you are ready to use it; keep the action open. When you pick up a gun, open the action right away to make sure the chamber is empty.
- Do not use the shotgun or pistol unless you have received training.
- · Make sure you use the right ammunition.
- · Make sure you know where you're shooting and that no one could be accidentally hit.
- · Wear ear and eye protection when shooting.

15-MM PISTOL

ACS's hazing equipment includes 15-mm single-shot pistols/launchers with 22-caliber caps, screamers, and bangers. The "caps" are small explosive charges that are placed in the firing mechanism of the pistol and that launch the screamer or banger when the gun is fired. These should be fired above the animals and not at them. The person shooting the gun must wear ear protectors and safety goggles.

12-GAUGE SHOTGUN

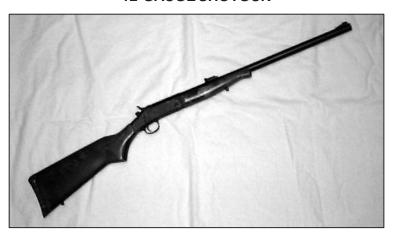
ACS uses 12-gauge shotguns with cracker shells to scare both birds and mammals. Rubber bullets can be used for bear deterrence, and slugs are available for bear protection if all else fails and humans are threatened by a bear. The guns used are single-barrel, single-shot shotguns that break and load at the breach. The barrel should be inspected for blockage after each shot.

Cracker shells are 12-gauge shotgun shells in which the shot has been replaced with a bulldog firecracker. When fired, the firecracker travels 75 to 150 yards and explodes in the air with a loud sound. It should be noted that cracker shells leave a heavy residue in the barrel of the shotgun, and this residue should be cleaned out regularly.

FIRING PROCEDURES

The following procedures must be followed for firing either the pistol or the shotgun:

- · Check the barrel for blockage after each shot. Low-power rounds and crackers may leave debris in barrel.
- For the shotgun, run the cleaning rod with bore brush through the barrel at least after every third shot.
- Be aware of fire hazards. Never use cracker shells where smoldering debris may fall into dry areas or on building roofs. Keep a fire extinguisher nearby.
- · Never fire into a strong wind.
- You should normally fire at a 45-degree angle above the horizon. With the pistol, extend your arm up and away at a 45-degree angle. Look away before pulling the trigger to protect your eyes from a prematurely exploding round. The same procedure of looking away before firing should be used with the shotgun.
- · After firing, if you do not see or hear the firecracker explode, do not look down either end of the shotgun barrel. It is possible that the firecracker is lodged in the barrel, and it could explode in your face. Extreme cold combined with the use of old primer caps can cause the gun to misfire or not fire at all.


ELECTRIC FENCING

The 5,000 feet of electric fencing ACS maintains can be used to surround a spill area to keep out larger terrestrial mammals. The fence can be used with or without electric current. When electrified, the fence is more effective in keeping out large mammals.

In addition, the fence can be used as protection around a remote camp where bears may be a problem.

12-GAUGE SHOTGUN

Terrestrial mammals that may be present on the North Slope include caribou, muskoxen, moose, brown (grizzly) bear, and foxes. Techniques for hazing mammals involve visual methods, auditory methods, pain (use of rubber bullets), or exclusion by fencing, netting, or gridding. The choice of appropriate method depends on the species involved, the local environment, the spill situation, and the time of year. The table on the next page summarizes available methods.

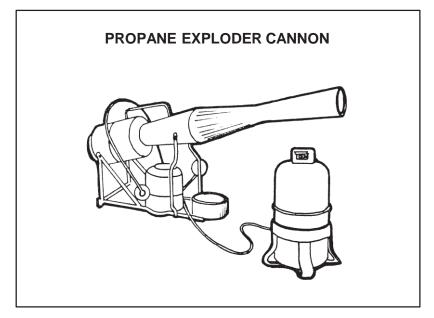
ACS's permit (ADF&G Permit No. FG94 - III - 02H) allows trained personnel to haze mammals. ADF&G is responsible for overseeing and providing guidance for ACS hazing personnel and may assist ACS with hazing. The minimum amount of hazing required to move animals away from a spill site will be used. The animals should not be unduly stressed during hazing.

Hazing of moose, muskoxen, and caribou would involve either surface or aerial methods. The ACS hazing kits can be used for individual animals and for small groups of animals, including small muskox herds that should be prevented from forming protective circles and encouraged to move away from the spill. According to the permit, prior to initiation, ACS must seek guidance and help from ADF&G on the most appropriate hazing technique for bears.

In addition, scare eye balloons, snow fences, or electric fences may be installed around isolated spill areas, field camps, staging areas, waste disposal sites, or other spill-related areas.

The distance from the spill site, staging area, etc. at which hazing of mammals would begin and end must be determined on a case-by-case basis. In some cases, it may be advantageous to haze animals at a considerable distance from a spill site. For example, a large moving herd of caribou a considerable distance away may be deflected on its course with minimal effort, while it may be nearly impossible to deflect the same herd once it is a few hundred yards from the spill site.

To protect mammals from oil:


- · Contain the oil before it reaches the mammals.
- · Haze them (scare them away) from oiled areas.
- Collect dead, oiled wildlife to prevent contamination through scavenging.
- Selected capture and stabilization of mammals on case-by-case basis.

MAMMAL HAZING TACTICS

SPECIES	TECHNIQUE(S)	COMMENTS
Bear	Pyrotechnics Propane exploder cannons Helicopters Airboats Ground vehicles (snow machines, ATVs, trucks) Rubber bullets	The preferred option is the use of pyrotechnics, if spill conditions allow. Helicopters, airboats, and ground vehicles are also effective tools, with helicopters being the most versatile of this group.
Caribou	Fences (electrified) Pyrotechnics	Effective for isolating small spill areas, field camps, etc. Most effective on individual animals or small groups.
Canbou	Propane exploder cannons	Most effective on individual animals of small groups.
	Helicopters Airboats	Most effective on herds. Helicopters are the most versatile and can be used on a herd while it is still far away from the spill.
	Ground vehicles (snow machines, ATVs, trucks)	
	Fences	Effective for isolating small spill areas, field camps, etc.
Moose	Pyrotechnics Propane exploder cannons	Helicopters and ground vehicles are the best tools to use on moose.
	Air horns Helicopters Airboats Ground vehicles (snow machines, ATVs, trucks)	Pyrotechnics can be used individually or with hazing equipment.
	Fences	Effective for isolating small spill areas, field camps, etc.
Muskoxen	Pyrotechnics Propane exploder cannons Helicopters Airboats Ground vehicles (snow machines, ATVs, trucks)	Ensure that animals are not hazed to the point that they form a defensive ring. Drive them slowly with a ground vehicle (ATV or truck).
	Fences	Effective for isolating small spill areas, field camps, etc.

Birds can be deterred from entering a spill area or hazed from an area by either visual or auditory methods, or both. The choice depends on the species involved, the local environment, and the spill situation. The table on the next page summarizes the available techniques.

The primary method for protecting birds from an oil spill is to prevent oil from reaching areas where birds are concentrated, including migration staging areas, seabird colonies, major feeding areas, nesting colonies, and wintering areas of marine birds.

The secondary response is to deter birds from an oil slick or contaminated shoreline. A deterrent may be used to discourage birds from landing in or near an oil slick or oiled area.

ACS uses the following guidelines for selecting the primary hazing method:

- Use propane exploder cannons to disperse birds where waterfowl, shorebirds, and raptors are dominant. This should include frequent human attendance at the site and supplemental use of shotgun cracker shells or pistol-launched noisemakers to ensure the highest effectiveness and to reduce habituation.
- Visual methods (Mylar tape, balloons) can be used to disperse birds in close proximity to the spill. This is
 most effective for waterfowl.
- Flightless birds may need to be herded with boats and/or helicopters (aircraft should not be used to disperse birds in any other circumstances). Flightless birds include young birds and molting birds. ("Molting" refers to the annual loss of feathers. Birds that are molting cannot fly.)
- Herding of molting birds may also be accomplished using personnel to herd them away from shorelines. Fencing and scare eyes can be placed after they depart to keep them from returning.

Capture and relocation is a tertiary method for dealing with flightless birds that will not leave an area. This could be used for small populations of birds of critical sensitivity. However, it is very labor-intensive and usually not practical.

BIRD HAZING TACTICS

CATEGORY	TECHNIQUE	GENERAL APPLICABILITY	NORTH SLOPE APPLICABILITY
Visual Methods	Floating or Stationary Figures	Human effigy (e.g., a scarecrow) has been shown to be effective in daylight	Scare eye balloons are available from ACS inventory. Preferred response. This is an authorized activity.
	Helium-Filled Balloons	Can prevent birds from landing	Not available on the North Slope, but available from Alyeska.
	Mylar Tape	Can prevent birds from landing	Mylar tape is available from ACS inventory.
Auditory Methods	Propane Cannons and Alarms	Bird density reduction ranges from 50% to 100% depending on species and amount of human attendance	Propane exploder cannons and pyrotechnics are available from ACS inventory.
		Works for 2 to 3 days	
		May not be effective in rough, open sea	
Visual and Auditory Methods	Herding or Hazing with Aircraft	Used for flying waterfowl or waterfowl on the ground that fly in response to disturbances	Use of aircraft is not approved in ACS permits; aircraft will not be used unless specifically authorized by agency
		Aircraft may cause diving birds to dive into contaminated area	personnel for a specific spill.
		Helicopters can be used to herd flightless birds (e.g., young or molting birds)	rd
	Herding with Boats or	Slow and labor-intensive	Small boats available for summer use.
	by Personnel on Foot	May be effective with flightless waterfowl	
		Ineffective for diving birds	
	BRECO Bird Scare Buoys	Floating scare devices	Available from ACS inventory.
Other Methods	Capture and Relocation	For small populations of birds of critical sensitivity	Will be used only if visual and auditory methods fail, and only with specific
		Labor-intensive and not practical in most cases	authorization by agency personnel for a specific spill.

BRECO Bird Scare Buoy

Tertiary response strategy for wildlife on the North Slope involves the capture and initial stabilization of oiled wildlife. When birds are captured, they will receive initial treatment at the ACS North Slope Wildlife Stabilization Center. Once the birds are stabilized, they will be transported to Anchorage for long-term care and rehabilitation.

ADF&G will be responsible for the capture of brown bear, caribou, muskoxen, and moose. ACS, under the supervision of a veterinarian or in consultation with or with assistance from ADF&G, will be responsible for stabilization, transport, and disposition of these species. ACS will use the table below as a guide for activities. A Data Sheet for Collected Live, Oiled Wildlife will be completed for each animal.

Any mammal or bird with serious injuries which would require extensive treatment or which may be unable to survive in the wild will be euthanized. All decisions to euthanize will be reviewed and approved by a licensed veterinarian or an individual with veterinary and rehabilitation experience. Agency approval is required before euthanasia is utilized. Euthanasia drugs are not maintained on the Slope because of North Slope drug restrictions. Licensed veterinarians assisting with wildlife response will be required to bring sufficient quantities of euthanasia drugs.

CAPTURE, STABILIZATION, AND TRANSPORT OF LARGE MAMMALS

ACTIVITY	BROWN BEARS	POLAR BEARS	CARIBOU (collared only)	MUSKOX	MOOSE (collared only)
Personnel - Capture	ADF&G personnel only	USFWS	ADF&G personnel only	ADF&G personnel only	ADF&G personnel only
Personnel- Stabilization, Transport, and Disposition	ADF&G or ACS under supervision of DVM	USFWS	ADF&G or ACS under supervision of DVM	ADF&G or ACS under supervision of DVM	ADF&G or ACS under supervision of DVM
Capture Methods	Culvert traps or tranquilizer	Culvert traps or tranquilizer	Tranquilizer	Tranquilizer	Tranquilizer
Stabilization	USF&W Bear Holding Module (5 bears maximum)	USF&W Bear Holding Module (5 bears maximum)	Field cleaning only	Field cleaning only	Field cleaning only
Transportation	By truck or helicopter	By truck or helicopter	N/A	N/A	N/A
Disposition	Released back into wild unless can't survive. Then look into a facility that might want a bear (zoo). Last resort would be euthanasia.	Released back into wild unless can't survive. Then look into a facility that might want a bear (zoo). Last resort would be euthanasia.	Field released	Field released	Field released

SUPPORT EQUIPMENT

BASE LOCATION	FUNCTION	QTY
Deadhorse	USF&W Bear Holding Module	1
Deadhorse	Bear culvert trap	2
Deadhorse	Small transport cage	1
Deadhorse	Pinniped holding enclosure	2
Deadhorse	Bear and pinniped stabilization kit	1

USF&W Bear Holding Module

Wildlife Capture Forms (from Wildlife Protection Guidelines for Oil Spill Response in Alaska (WPG, 2020)

This section contains live animal capture and transport forms. Full-page versions of the forms are available on the ADEC <u>Area Plan References and Tools</u> web page. Please check this website for the most recent versions of the following forms:

Live Animal Capture Form

Print landscape orientation on both sides of one sheet of water-resistant paper.

Capture Log for LIVE Animals

Print landscape orientation on both sides of one sheet of water-resistant paper.

Transport Log for LIVE Animals

Print landscape orientation on both sides of one sheet of water-resistant paper. These forms are provided for personnel who have been trained in live animal capture and transport.

Training is provided by some OSRO/PRACs and can also be provided by resource agencies upon request.

BIRD OTHER S. ICS Position Group, Task For Phone & Email, if there is no ICS p. Location Name: Longitude:	SEA OTTER Animal Number: Rehab Facility Use Only CAPTURE TEAM INFORMATION CAPTURE TEAM INFORMATION Data Recorder Name & Employer (Phone & Email, if there is no ICS position):
ransportation Name or Call Sign: ICS Position Group, Task Force, Strike Team:	AM INFORMATION Data Recorder Name & Employer (Phone & Email, if there is no ICS position):
ransportation Name or Call Sign: ICS Position Group, Task Force, Strike Team: Ppe: BOAT AMCRAFT VEHICLE	Data Recorder Name & Employer (Phone & Email, if there is no ICS position):
pe: BOAT ☐ AIRCRAFT ☐ VEHICLE ☐ ead Animal Handler Name & Employer (Phone & Email, if there is no ICS position): CAPTURE ate: MM/DD/YYYY Time: AM PM CAGION Name: Location Name: Longitude:	
Time: Location Name: AM PM Longitude:	Assistant Animal Handler Name & Employer:
Time: Location Name: AM PM Longitude:	CAPTURE INFORMATION
Longitude:	GPS Datum: WGS84 ☐ NAD83 ☐ NAD27 ☐
	Latitude: Other:
Animal Location PRIOR to Capture: Animal Benavior PRIOR to Capture: SWIMMING ON LAND	☐; RUNNING ☐; FLYIN]; OTHER ☐ Explain: JURED ☐; LONE PUP/C
erence Number: Notes:	
ANIMAL	ANIMAL DESCRIPTION
Age: ADULT ☐ PUP/CHICK ☐ MOM & Sex: MALE ☐ FEMALE PUP/CHICK ☐	FEMALE ☐ UNK ☐ Disposition AFTER Capture: TRANSFERRED ☐ DIED ☐ ESCAPED ☐ EUTHANIZED ☐; RELEASED ☐ #released or euthanized explain in notes below.
Animal Behavior AFTER Capture: STILL/LETHARGIC ☐; ALERT/ACTIVE ☐; Explain:	AGGRESSIVE
Animal Care Provided in Field:	Notes:
ANIMAL TRANSFER - F	ANIMAL TRANSFER – FIELD CHAIN OF CUSTODY
Date: MAIDDAYYYY Time: AM PM GROOMING/PREENING GROOMING/PREENING DEAD	FIIME OF TRANSFER: STILL/LETHARGIC \square ; ALERT/ACTIVE \square ; AGGRESSIVE \square ; IN SEAD \square ; EUTHANIZED \square ; OTHER \square Explain:
Transfer to: BOAT HELO VEHICLE Captor's Printed Name: STABILIZATION REHAB MORGUE □	Signature: /
Receiver's Printed Name: /	Affiliation:
Date: MM/DD/YYYY Time: Animal Behavior AT TIME OF TRANSFI AM PM GROOMING/PREENING □; DEAD □;	IIME OF TRANSFER: STILL/LETHARGIC □; ALERT/ACTIVE □; AGGRESSIVE □;
Transfer to: BOAT HELO VEHICLE Transferor's Printed Name: STABILIZATION REHAB MORGUE	Signature:
Receiver's Printed Name: Signature: /	Affiliation:

					TRANSFER DATE/TIME (MM/DD/YYYY)				
ne:		Data Recorder Name & Employer (Phone & Email, if there is no ICS position):	Assistant Animal Handler Name & Employer:		Capture Team Gave the Animal TO: Name of the signatory (Receiver) on the LIVE Animal Capture Form, Transportation Name or Call Sign, Affiliation or ICS Position, and any relevant notes to assist rehabilitators				
Incident Name:	CAPTIIRE TEAM INFORMATION	Data Record	Assistar	LOG INFORMATION	DISPOSITION At Time of Transfer D = Died E = Escaped R = Released T = Transferred				
Capture Log for LIVE Animals Form stays with Capture Team	CAPTURE TEA	ICS Position Group, Task Force, Strike Team:	Type: BOAT ☐ AIRCRAFT ☐ VEHICLE ☐ ☐ Lead Animal Handler Name & Employer (Phone & Email, if there is no ICS position):	LOGINE	Capture LOCATION: Place Name and Lattude/Longitude where the animal was captured				
Capture Log for LIVE Animals mstays with Capture Te			HCLE □		CAPTURE DATE/TIME				
For		Transportation Name or Call Sign:	Type: BOAT □ AIRCRAFT □ VEHICLE □ Lead Animal Handler Name & Employ		Species or Species Group (bird, sea otter, seal, etc.)				i Į
		Transportatic	Type: BOAT□ /		Reference Number Located on LIVE Animal				

Species CAPTURE Capture LOCATION: Species CAPTURE Group (bird, DATE/TIME place Name and Latitude/Longitude where sea otter, (MM/DD/YYYYY) Seal, etc.) MM/DD/YYYYY MM/DD/YYYYYYYYYYYYYYYYYYY		Data Recorder Name:	la Maille.	Page	of
		Capture LOCATION: Place Name and Latitude/Longitude where the animal was captured:	DISPOSITION At Time of Transfer D = Died E = Escaped R = Released T = Transferred	Capture Team Gave the Animal TO: Name of the signatory (Receiver) on the LIVE Animal Capture Form, Transportation Name or Call Sign, Affiliation or ICS Position, and any relevant notes to assist rehabilitators	TRANSFER DATE/TIME

This form is the primary record maintained by each capture boat/vehicle/aircraft to track each live animal captured by this team. The original form stays with the boat/vehicle/aircraft; copies will be requested by officials within the Incident Management Team. This information is important to record both to document each team's capture activity and as a backup in case individual LIVE Animal Capture Forms are lost. Information should be recorded in this log for each animal captured and transported. All live animals must be accompanied by a separate LIVE Animal Capture Form, which stays with the animal until it reaches a rehabilitation facility, AND must also be signed by each transporter.

iso de signed dy each transporter.			
Incident Name: Incident-specific assig	ncident Name: Incident-specific assigned number or incident assigned name.	2	
	CAPTURE	CAPTURE TEAM INFORMATION	
Transportation Name or Call Sign: Record boat/vehicle/aircraft name or	ecord boat/vehicle/aircraft name or	ICS Position: ICS position of the ca	ICS Position: ICS position of the capture boat/vehicle/aircraft. Indicate all areas of
identifying number. Transport Type: Check appropriate box.	heck appropriate box.	assignment. (Ex: Wildlife, Task For	assignment. (Ex: Wildlife, Task Force 1, Strike Team 1 or WL TF1, ST1).
Data Recorder: Record information	Data Recorder: Record information Lead Animal Handler: Record information for the person who is the	ation for the person who is the	Assistant Animal Handler:
for the person filling out this form.	Lead Animal Handler (person with the most training and/or experience).	most training and/or experience).	Record information for person assisting the Lead
			Animal Handler.
	ANIM	ANIMAL INFORMATION	
Animal Reference Number: Sequentik	al number assigned by the capture tear	n to each live animal. The number o	Animal Reference Number: Sequential number assigned by the capture team to each live animal. The number can be found on the LIVE Animal Capture Form.
Capture Date: MM/DD/YYYY (Ex: 06/05/2010)	05/2010) Time: Record the time; include AM or PM.	de AM or PM.	

				5
T for Form sta	Transport Log for LIVE Animals Form stays with Transport Team	Incident Name:	me:	
	TRANSPORT TEAM INFORMATION	EAM INFORMA	NOIT	
Transportation Name or Call Sign:	ICS Position Group, Task Force, Strike Team:	Data Recorde	Data Recorder Name & Employer (Phone & Email, if there is no ICS position):	
Type: BOAT ☐ AIRCRAFT ☐ VEHICLE ☐	Ē D			
	LOGINE	LOG INFORMATION		
Animal Reference Number Located on Located on Caster Form Species or Species T Animal Species or Located on Located on Located on Sea ofter, A LIVE Animal Seal, etc.) A A A A A A A A A A A A A A A A A A A	Transporter Received the Live Animal FROM: Name of the signatory (Captor or Transferor) on the LIVE Animal Capture Form, Transportation Name or Call Sign, Affiliation or ICS Position	DATE/TIME (MM/DD/YYYY)	Transporter Gave the Live Animal TO: Name of the signatory (Receiver) on the LIVE Animal Capture Form, Transportation Name or Call Sign, Affiliation or ICS Position	DATE/TIME (MM/DD/YYYY)
og for LIVE Animals –	Transport Log for LIVE Animals – WPG Version 2020.1 (front page)			

			C: S	ı
o	DATE/TIME (MM/DD/YYYY)			8
Page	Transporter Gave the Live Animal TO: Name of the signatory (Receiver) on the LIVE Animal Capture Form, Transportation Name or Call Sign, Affiliation or ICS Position:			LIVE Animals
der Name:	DATE/TIME (MM/DD/YYYY)			port Log for L
Data Recorder Name:	Transporter Received the Live Animal FROM: Name of the signatory (Captor or Transferor) on the LIVE Animal Capture Form, Transportation Name or Call Sign, Affiliation or ICS Position:			INSTRUCTIONS: Transport Log for LIVE Animals
:e	Species or Species Group (bird, sea otter, seal, etc.)			0
ncident Name:	Animal Reference Number Located on LIVE Animal			3

This form is the primary record maintained by each transport boat/vehicle/aircraft to track each live animal transferred by this team. The original form stays with the boat/vehicle/aircraft; copies will be requested by officials within the Incident Management Team. This information is important to record both to document each boat/vehicle/aircraft's transport activity and as a backup in case individual LIVE Animal Capture Forms are lost or damaged. Information should be recorded in this log for each animal transported. All live animals must be accompanied by a separate LIVE Animal Capture Form, which stays with the animal until it reaches a rehabilitation facility, AND must also be signed by each transporter.

Transport Log for LIVE Animals – WPG Version 2020.1 (back page)

COLLECTION OF SMALL CARCASSES AND DOCUMENTATION OF LARGE CARCASSES

This tactic is a revision of W-4 Salvage of Dead Wildlife, based on the updated Wildlife Protection Guidelines for Oil Spill Response in Alaska (WPG), Section 9740.3.3.

Objective and Strategy

- Remove oiled and unoiled carcasses from the environment to prevent secondary contamination of scavengers.
- Document carcass species, locations, and other information to evaluate the impact of the spill on affected populations and to assess overall impact of a spill event on the environment.

Tactic Description

- Carcasses that are small enough to be removed from the environment (e.g., fish, shellfish, small mammals, and birds) need to be documented, collected, and transferred or disposed of according to protocol. Often, carcasses will be delivered to a wildlife agency representative at a single location – the Evidence Custodian at the morgue facility.
- Carcasses that are too large to remove from the environment need to be documented and perhaps sampled.
 Sample collection from large carcasses is not included in this tactic.
 - For large carcass sampling, see "Dead Marine Mammal Recovery and Field Processing Procedures" in the NMFS Cook Inlet and Kodiak Marine Mammal Disaster Response Guidelines, available from the NOAA Institutional Repository.

Safety Considerations

- Bear guards, or appropriate bear safety equipment, should be used where bears may be present, or as outlined in the incident-specific Safety Plan.
- Slips, trips, and falls are a particular hazard for carcass collection because people may be focused on searching for carcasses while walking in rough, slippery terrain.
- Avoid steep and unstable surfaces (cliffs, mud, exposed slopes, shoreline rocks with surf, etc.).
- Primary PPE for carcass collection are nitrile gloves. Other PPE (e.g., oil-resistant outer- wear such as Tyvek coveralls) will be outlined in the incident-specific Safety Plan, and is dependent on the level of carcass oiling, amount of oil in the environment, and weather.

Operational Considerations

Operating Environments, Geographic Considerations, and Access

- · Carcass collection may be performed in all environments where a spill can occur, including:
 - o On land:
 - Lakes, streams, and rivers and associated shorelines;
 - o Marine shorelines, marine nearshore, and open water.
- Responders may search for carcasses on foot or by vehicle (snow machine, truck, ATV, boat, aircraft) depending on the size, location, and complexity of the spill; terrain; and land ownership/access.
- While carcass collection and disposition procedures will follow this tactic, how those carcasses are found –
 carcass surveys may vary depending on the size, location, and complexity of the spill; survey protocols may
 be incident-specific.

Species Type and Life Stage

Birds and small mammals: Collect partial carcasses and intact, whole birds and small mammals, regardless of degree of scavenging, disintegration, or decomposition. Do not collect single feathers, or feather or fur clumps, that are not attached to skin or other body part. Collect disarticulated carcasses (those in separate pieces) by bagging and tagging all pieces that likely came from the same animal as one whole animal.

Large mammals (adult bears, whales, seals, sea lions, walruses, and some ungulates): Response personnel should notify Unified Command immediately upon finding carcasses that are too large to be collected. These must be documented by the carcass collection team and may subsequently be sampled by separate agency or authorized personnel. Carcasses of young large mammals such as cubs or calves should be collected when possible. Collect disarticulated carcasses (those in separate pieces) by bagging and tagging all pieces that likely came from the same animal as one whole animal.

Other aquatic species (fish, shellfish, and invertebrates): Collect partial and intact whole carcasses, regardless of degree of scavenging, disintegration, or decomposition. If large numbers of disarticulated or very small carcasses are found, incident-specific protocols may be developed to facilitate their collection.

Oily waste: Oiled carcasses are considered oily waste. Any oiled carcasses, such as large mammals or a large fish kill, that are not transported to the Evidence Custodian or morgue must be documented and disposed of according to the incident Waste Management Plan, after approval by wildlife agencies.

Communications

Ensure all forms and tags are accurate and complete at the end of each shift.

Follow incident-specific procedures to submit forms to USFWS, NMFS, ADF&G, and the Documentation Unit. Ensure tags will stay with the carcasses.

Follow incident-specific reporting thresholds (e.g., report any and all protected species) to Unified Command and wildlife agencies.

All responders should immediately report observations of carcasses through their supervisor to Unified Command. Reports should include (at a minimum):

Observer name, time, date, and location (latitude/longitude and location description);

Species or species group and numbers of each species observed;

Estimated degree of oiling and location of carcass relative to known oiled area;

Photographs, if possible

NORTH SLOPE CONSIDERATIONS

The following list of salvage procedures will be included in an incident-specific plan for retrieving dead oiled wildlife. The plan will be reviewed and approved by the appropriate wildlife resource agency(ies), and implemented by the responsible party.

- 1. Follow the procedures outlined in the Implementation section of this tactic to prepare, record and transport each carcass. Ensure that the documentation forms and tags are protected from oiling.
- 2. Bags will be transported to the Wildlife Stabilization Center in the GPB PBE Building U-8 to be logged in and placed in refrigerated trailer for holding.
- 3. Agency personnel will inspect and catalogue all collected carcasses.
- 4. Following inspection, carcasses are transferred to the freezer trailer for storage, until plans are made for final disposition.
- 5. The responsible party will coordinate plans for final disposition with appropriate agencies.

Equipment, Vehicles or Vessels, and Personnel for Carcass Collection Tactic

EQUIPMENT	QUANTITY	FUNCTION/NOTES
Personal Protective Equipment (PPE)	As needed	Ensure safety of responders
Bear pepper spray	As needed	As outlined in incident-specific Safety Plan
GPS Unit	1	Document locations
Camera	1	Documentation
Photo scale	1	Documentation
Binoculars	1 per person	Search for carcasses; situational awareness
	or team	,
Extra batteries for GPS unit and camera	1 set each	Avoid electronics down time
Carcass Collection Kit (for 10 small birds	1 or more	Enable the safe and proper collection and
or mammals, 1-3 eagles, 1-3 sea otters)		documentation of carcasses.
Large/XL Cooler or tote	1	Wheeled if possible
Paperwork:		·
Incident-specific maps or shoreline segment	1 set	
maps		
Carcass Chain of Custody (CoC) Tags	15	
(white)		
Pre-printed Individual Carcass	15	If pre-printed tags are unavailable, use water-
Identification Tags (yellow)	10	resistant labels with: date, time, location,
		collector's name, and an assigned sequential carcass ID number.
		carcass id number.
Carcass Collection Forms	5	Print forms on water-resistant (e.g., Rite-in-the-Rain®)
		paper.
Ziploc® bags for Carcass Collection	5	
Forms		
Carcass Collection Protocol	1	Print on water-resistant (e.g., Rite-in-the-Rain®)
		paper.
Transport Log for Carcasses	10	For use by Transporter – may be with them. Print on
		water-resistant (e.g., Rite-in-the-Rain®) paper.
Pencil and permanent pen (e.g., Sharpie®)	5 each	
Clipboard	1	
Printed permits and	1 or more	May be from multiple agencies (USFWS, NMFS,
authorizations		and ADF&G) and landowners.
Water resistant field notebook	1 per person	
Collection supplies:		
Brown (kraft) paper bags, small	10	Lunch bags
Brown (kraft) paper bags, large	6	Leaf or lawn bags
Non-coated (e.g., kraft) roll of paper	1	If carcasses larger than will fit in a large paper bag are
		anticipated.
Plastic bags, small (e.g., gallon size	10	
Ziploc®)		
,		Į.

EQUIPMENT		QUANTITY
Plastic bags, large (e.g., kitchen trash bags	, compactor	10
bags)		
Twist ties, zip-ties, or wire ties		1 packet
Nitrile gloves, one-size-fits-all		25 pairs
Field scissors or knife		1
Flagging		1 roll
Ice packs		4
VESSEL/VEHICLES		QUANTITY
Various depending on spill environment, siz complexity. May include trucks, ATVs, boatetc.		Varies
PERSONNEL		TACTIC-SPECIFIC TRAINING
Carcass Collector	Carcass collec	tion training
Data Recorder	Carcass collec	tion training
Transporter	Transporter tra	ining
Evidence Custodian/ Designated Agency Personnel		
EQUIPMENT		QUANTITY
Plastic bags, large (e.g., kitchen trash bags, compactor bags)		10
Twist ties, zip-ties, or wire ties		1 packet
Nitrile gloves, one-size-fits-all		25 pairs
Field scissors or knife		1
Flagging		1 roll
lce packs		4
VESSEL/VEHICLES		QUANTITY
Various depending on spill environment, siz complexity. May include trucks, ATVs, boat etc.		Varies
PERSONNEL		TACTIC-SPECIFIC TRAINING
Carcass Collector		Carcass collection training
		Carcass collection training
Data Recorder		

Carcass Collection (from WPG, 2020) (Page 2 of 2) TACTIC W-4

Implementation

Preparation

Obtain PPE, equipment, and printed copy of Permits and Authorizations.

Ensure activities can be safely conducted.

Determine if Bear Guards or bear safety equipment are needed for shoreline or inland activities in accordance with the incident-specific Safety Plan.

Field Implementation (see also Figure 1: Carcass Collection Job Aid For Small Carcasses)

RECORDER: Complete top of Carcass Collection Form, following instructions on back of form.

Fill out the shoreline search section of the form only if instructed to do so, using incidentspecific protocols.

Take photos as needed to document carcasses in the field.

COLLECTOR: Wearing new nitrile gloves, place individual carcass in paper bag, then in clear plastic bag. For larger carcasses, wrap in uncoated (e.g., kraft) paper or aluminum foil and then place in larger plastic bags.

Do NOT put carcasses directly in plastic bags.

Do NOT place nitrile gloves in bag with carcasses.

RECORDER: Complete a yellow Individual Carcass Identification Tag for each carcass.

The Carcass Chain of Custody (CoC) Tag # is the Batch Tag No. on the Carcass Chain of Custody (CoC) Tag:

The Carcass ID # on Individual Carcass Identification Tag is the pre-printed number from the next blank line on the Carcass Collection Form.

CARCASS	INDIVIDUA IDENTIFICA	
CHAIN OF CUSTODY (CoC) TAG #	CARCASS ID #	DATE (MM/DD/YYYY)
OCATION (Lat)	/Long)	COLLECTION TEAM LEADER (Printed Name)

Carcass ID #	Latitude (decimal degrees)	Longitude (decimal degrees)
01		
02		

Individual Carcass Identification Tags may be a color other than yellow. If pre-printed Individual Carcass Identification Tags are not available, use waterproof paper to create a tag and write the date, time, location (Lat/Long), and Collector's Name on it.

- COLLECTOR: Tie completed Individual Carcass Identification Tags to the outside of each plastic carcass bag.
- RECORDER: On the Individual Carcass Log section of the Carcass Collection Form, complete the line corresponding to the selected Carcass ID No. (Lat/Long, Species, Condition, etc.):

			INDIVIDU	AL CARCAS	S LOG		
Carcass ID #	Latitude (decimal degrees)	Longitude (decimal degrees)	Species	Condition FRESH, DEG, MUM	NO, LT, MOD,	Photo #	Comments
01					32 330 36,00 36		
02					*		
03	7	9			12		

COLLECTOR: Place bagged and tagged carcasses inside of larger plastic "batch" bag.

A "batch" is the number of animals that fit inside a large plastic bag and will vary from 1 to 10 carcasses depending on species size and number of carcasses.

RECORDER AND COLLECTOR: Repeat Steps b-f until the batch is complete.

Start a new "batch" when: 1) Ten carcasses have been collected (and Carcass Collection Form is complete); 2)

Batch bag is full: or 3) Moving to a new area.

RECORDER: Place completed Carcass Collection Form in a re-sealable, waterproof (e.g., Ziploc □) bag. Place this bag inside the batch bag but outside of any individual carcass bags.

RECORDER: Complete and sign a Carcass Chain of Custody (CoC) Tag for each batch of carcasses.

COLLECTOR: Tie completed, signed Carcass Chain of Custody (CoC) Tag to outside of batch bag.

RECORDER: For carcasses too large to collect, take photographs and write in field notebook:

Personnel name(s), time, date, and location (Lat/Long and description);

Species or species group and numbers of each species observed:

Estimated degree of oiling and location of carcass relative to known oiled area;

Number and location of photographs.

Transport and Storage

RECORDER AND TRANSPORTER: Sign Carcass Chain of Custody (CoC) Tag when carcasses are transferred.

TRANSPORTER: Complete Transport Log for Carcasses following instructions on back of form.

TRANSPORTER: Keep carcasses as cool as possible.

TRANSPORTER: Deliver carcasses to additional TRANSPORTER if needed (i.e., from vessel to vehicle) or to agency-designated Evidence Custodian at morgue or designated transfer point.

The Carcass Chain of Custody (CoC) Tag is signed by both TRANSPORTERS each time the carcasses change

The Evidence Custodian will sign the Carcass Chain of Custody (CoC) Tag, and inspect and catalogue all collected carcasses, then ensure storage until plans are made for final disposal.

Deliverables

Correctly bagged carcasses and batches of carcasses.

Completed Individual Carcass Identification Tag for each carcass.

Completed Carcass Chain of Custody (CoC) Tag for each "batch" of 1-10 carcasses.

Completed Carcass Collection Form for each "batch" of 1-10 carcasses.

Completed Transport Log for Carcasses for each shift and mode of transportation.

Copies of field notebooks and photographs for each shift.

SD cards, cameras, and GPS units turned in or data downloaded.

CARCASS COLLECTION JOB AID FOR SMALL CARCASSES **Carcass Collection Job Aid** Place the paper-bagged carcass into a clear plastic bag and tie securely. Fill out the top section of the Carcass Collection Form. Tag the plastic bag Only fill out the with an Individual When a carcass is located shoreline search section Carcass Identification place the carcass into a paon back of form if inper bag OR wrap large birds Tag or a waterproof structed to do so by incitag with Date, Time, or mammals with paper. dent-specific protocols. Note: Do NOT place used Location, and Collec-SHORELINE SEARCH INFORMATION gloves in bag with carcass. tor's Name. Location and Shoreline Segment Do NOT put carcasses direct-CARCASS CHAIN OF CUSTODY (CoC) TAG # ly in plastic bags. Fill in the carcass infor-Wear nitrile gloves mation in the INDIVIDUAL when handling CARCASS LOG section of the Carcass Collection Repeat steps 1-4 for Note: A new pair of gloves all carcasses found in Latitude should be donned at the search area. Once all 01 carcasses are collected start of each new search follow the steps below. 02 location. At the end of each day, the carcass collector or transporter should transfer all Complete the bottom collected carcasses to section of the Carcass the pre-designated Collection Form. The bag of carcasses carcass custodian Sign the Caris handed to the (likely from a wildlife cass Chain of Fill out the Carcass transporter. resource agency). Custody Tag Chain of Custody Tag then record the preand attach to /// Place all clear Transporter signs the plastic printed Batch Tag No. Carcass Chain of Cusbagged carcass-200 bag. on the Carcass Colleces found in the tody Tag and records tion Form. information in the location in a CHAIN OF CUSTODY: Complete a "Fr Transport Log for large plastic bag. CARCASSES. Fold the Carcass 1060 Transport Log for CARCASSES Job Role Key Collection Form in half, place it in a Transportation Name or Call Sign: | ICS Position Group, Tech Face, State London Ziplock™ bag, and then place it in the large bag. Carcass Collection Job Aid WPG Version 2020.1 Full-page version available on the ADEC Area Plan References and Tools web page

Additional Resources for Large Carcasses

Equipment lists for sampling and collection of large carcasses, especially marine mammals, can be found in "Appendix 5: Equipment Lists Per Response Activity" in the NMFS Cook Inlet and Kodiak Marine Mammal Disaster Response Guidelines, the NOAA Institutional Repository.

Related Tactics

Wildlife Reconnaissance (Recon)

References

- National Marine Fisheries Service. 2017. NMFS Arctic Marine Mammal Disaster Response Guidelines. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/AKR-16. 81p. doi: 10.7289/V5/TM-F/AKR-16. Available from the NOAA Institutional Repository.
- National Marine Fisheries Service. 2019. Cook Inlet & Kodiak Marine Mammal Disaster Response Guidelines. NOAA Fisheries Guidance Document. pp 80 + appendices. Available from the <u>NOAA</u> Institutional Repository.
- Ziccardi, M.H., S.M. Wilkin, T.K. Rowles, and S. Johnson. 2015. Pinniped and Cetacean Oil Spill Response Guidelines. U.S. Dept. of Commerce, NOAA. NOAA Technical Memorandum NMFS - OPR - 52, 138 p. Available from the NOAA Institutional Repository.

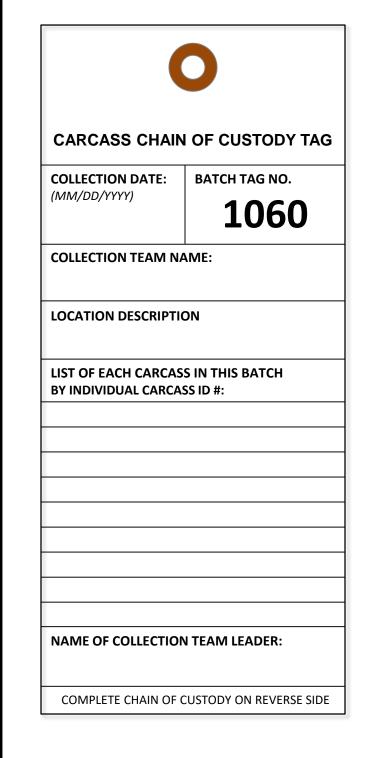
Forms (on following pages)

- Carcass Collection Form
 - O A printable version of this form is available on the on the ADEC <u>Area Plan References</u> and <u>Tools</u> web page.
 - O Print landscape orientation on both sides of one sheet of water-resistantpaper.
- Individual Carcass Identification Tag
 - O Pre-printed, as pictured, or use a water-resistant blank tag, two sides.
- Carcass Chain of Custody (CoC) Tag
 - O Pre-printed or use a water-resistant blank tag, two sides.
- Carcass Intermediate Transporters Log
 - A printable version of this form is available on the on the ADEC <u>Area Plan References</u> and Tools web page.
 - O Print landscape orientation on both sides of one sheet of water-resistantpaper.

		Use one form for each batch of carcasses					OSE OIIIy).
ICS Position assigned):	(Group, Task Force, \$	ICS Position (Group, Task Force, Strike Team, or other name if no ICS Position assigned):	ame if no ICS $P_{\mathcal{K}}$		Carcass Collecto	r Name & Er.	Carcass Collector Name & Employer (Phone & Email, if no ICS Position assigned):
ata Recorde	Data Recorder Name & Employer (Phone & Email, if no	(Phone & Email, if no l	ICS position):		Have carcass collection been obtained? YES	s collection ed? YES □	Have carcass collection permits & authorizations been obtained? YES □ <i>If not, Do Not Collect Carc</i> asses
Camera & SD Card ID#:	Card ID #:	9	3PS & SD Card ID #:		GPS Da	3 Datum : (WGS 083 □ NAD27 [GPS Datum: (WGS84 preferred) ☐ NAD83 ☐ NAD27 ☐ Other:
eneral Locati	General Location or Shoreline Segment:	egment:			If applicable, fil	l out Shoreli.	If applicable, fill out Shoreline Search Information on reverse.
			INDIVIDUAL	INDIVIDUAL CARCASS LOG	9		
Carcass ID #	Latitude (decimal degrees)	Longitude (decimal degrees)	Species	Condition FRESH, DEG, MUM	Oiling NO, LT, MOD, HV, UNK	Photo #	Comments
10							
02							
03							
04							
90							
90							
07							
80							
60							
10							

	eam, if	Carcass Collector: Record information for designated Carcass
er: Reco	ple. Record other Identifier If no ICS position. nation for Permits and Authorizations: Ask your support to the plant of the plant o	Collector, who serves as Collection Leam Leader. Servisor. If permits have not been obtained, you are not authorized to otos and document their location.
Imera/GPS & SD Card emory cards). PERSON	Write ID numbers of assigned camera and GPS unit and the SD PHONE OR CAMERA USE IS NOT RECOMMENDED.	GPS Datum: Check one (found in GPS settings). WGS84 is preferred.
cation: Name of gener	Location: Name of general location as shown on navigational charts or maps, and (if applicable) name or number of assigned shoreline segment.	umber of assigned shoreline segment.
Carcass ID #: When filling out yellow Individual Carcass ID Tag, this is the number (1-10) to record for "Carcass ID #".	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Species: Record the species as precisely as you can. For example, you might ID a gull as "mew gull" (to species), or as "unidentified gull" or "bird."
Condition: 'FRESH' = fresh insect/crustacean intrusion or of the following: eyeballs sun insects/crustaceans/other ani parts are missing. 'MUM' = m appears completely dried out.	y dead. Eyeballs are plump and intact, body is whole with no evidence of other scavenging. 'DEG' = degraded body condition, with one or more ken or gone; body decomposing or being eaten by mals; exposed flesh does not appear completely dried out; or some body ummified. Only skin, bones, or feathers remain, or exposed flesh	Oiling: NO = no obvious oil on body. LT = light spots of oil. MOD = patches over more of the body than LT. HV = heavily oiled, over most of the body.
loto #: Digital photo # fr	SD card, or # written on whiteboard and photographed with carcass. A	Comments: Please note any additional information that won think minh be useful
Carcass Chain of Custoc (1-10).	Batch Tag No. from white Carcass C	Tag, & total number of carcasses for this batch of for SHORELINE SEARCHES)
Date:	Location and Shoreline Segment:	Carcass Collector Name:
Start / Stop Times:	/ Start / Stop GPS Coordinates (decimal degrees):	/
Wind is Toward: Water	☐ Land ☐ Along Beach ☐ No wind ☐ ☐ Search Platform: Walking ☐	☐ Boat ☐ Vehicle ☐ Aircraft ☐ Other ☐
Dominant Shoreline Type: Sand Beach Width Searched (feet):	Sand Pebble Cobble Boulder Bedrock Vertical Cliff	Marsh ☐ Sand/Mud Flat ☐ Other ☐
Comments:	Sea Cil Tail: Oilgie Tail:	
rcass Collection Form –	Carcass Collection Form – WPG Version 2020.1 (back page)	

	INDIVIDUAL	CARCASS IDEN	NTIFICATION TAG
0	CARCASS CHAIN OF CUSTODY (CoC) TAG #	CARCASS ID #	DATE (MM/DD/YYYY)
	LOCATION (Lat/	Long)	COLLECTION TEAM LEADER (Printed Name)


TAG INSTRUCTIONS

This system works best when you complete the individual *Carcass Identification Tag*, the *Carcass CoC Tag* and the *Carcass Collection Form* at the same time.

CoC Tag #: Enter the pre-printed number from the *Carcass* **CoC** *Tag* for the batch-bag this carcass will be placed into.

Carcass ID #: Assign a sequential number to each carcass to be placed within a batch-bag (Ex: 01, 02, 03, 04, etc.) This number will match the Carcass ID number on the *Carcass Collection Form* for this batch.

CHAIN OF CUSTODY: Complete a "From" and "To" section each time the Batch changes possession

From (Name/Co.)Release SignatureDateTo (Name/Co.)Receipt SignatureDateFrom (Name/Co.)Release SignatureDateTo (Name/Co.)Receipt SignatureDateFrom (Name/Co.)Release SignatureDateTo (Name/Co.)Receipt SignatureDateFrom (Name/Co.)Release SignatureDateTo (Name/Co.)Release SignatureDateTo (Name/Co.)Receipt SignatureDate	possession		
From (Name/Co.) Release Signature Date To (Name/Co.) Receipt Signature Date From (Name/Co.) Release Signature Date To (Name/Co.) Receipt Signature Date From (Name/Co.) Receipt Signature Date	From (Name/Co.)	Release Signature	Date
To (Name/Co.) Receipt Signature Date From (Name/Co.) Release Signature Date To (Name/Co.) Receipt Signature Date From (Name/Co.) Release Signature Date	To (Name/Co.)	Receipt Signature	Date
From (Name/Co.) Release Signature Date To (Name/Co.) Receipt Signature Date From (Name/Co.) Release Signature Date	From (Name/Co.)	Release Signature	Date
To (Name/Co.) Receipt Signature Date From (Name/Co.) Release Signature Date	To (Name/Co.)	Receipt Signature	Date
From (Name/Co.) Release Signature Date	From (Name/Co.)	Release Signature	Date
	To (Name/Co.)	Receipt Signature	Date
To (Name/Co.) Receipt Signature Date	From (Name/Co.)	Release Signature	Date
	To (Name/Co.)	Receipt Signature	Date

					DATE/TIME	(MM/DD/YYYY)				
:		Data Recorder Name & Employer (Phone & Email, if there is no ICS position):			Transporter Gave the Carcass(es) TO:	Name of the signatory (To/Receipt) on the Carcass Chain of Custody Tag. Include Transportation Name or Call Sign, Affiliation or ICS Position				
Incident Name:	INFORMATION	Data Recorder		MATION	DATE/TIME	(MM/DD/YYYY)				
Transport Log for CARCASSES Form stays with Transport Team	TRANSPORT TEAM	ICS Position Group, Task Force, Strike Team:	le 🗆	LOG INFORMATION	Transporter Received the Carcass(es) FROM:	Name of the signatory (From/Release) on the Carcass Chain of Custody Tag. Include Transportation Name or Call Sign, Affiliation or ICS Position				The second to the second secon
T for Form sta		Transportation Name or Call Sign:	Type: BOAT ☐ AIRCRAFT ☐ VEHICLE ☐		Species or Species	Group (bird, sea otter, seal, etc.)				
		ransportation	/pe:BOAT ☐ All		Batch Tag	Found on Carcass Chain of Custody Tag				7

Species or Transporter Received the Carcass(es) FROM Number Species Sp	cident Name:	Data Recorder Name:	Name:	Page	of
Group (bird, Name of the signatory (TowReceipt) on the Carcass Chain sea otter, of Custody Tag. Transportation Name or Call Sign, Affiliation or ICS Position or ICS Position seal, etc.) or ICS Position Affiliation or ICS Position Affiliation or ICS Position		Transporter Received		Transporter Gave the Carcass(es) TO	DATE/TIME
		486		Name of the signatory (To/Receipt) on the Carcass Chain of Custody Tag, Transportation Name or Call Sign, Affiliation or ICS Position	(MM/DD/YYYY)

This form is the primary record maintained by each transport boat/vehicle/aircraft to track each carcass or batch of carcasses transported by this team. The original form stays with the boat/vehicle/aircraft; copies will be requested by officials within the Incident Management Team. This information is important to record both to document each boat/vehicle/aircraft's transport activity and as a backup in case the Carcass Chain of Custody Tag is lost or damaged. Information should be recorded in this log for each carcass or batch of carcasses transported AND each transporter must complete and sign the Carcass Chain of Custody Tag when accepting or transferring carcasses.

Incident Name: Incident-specific assigned number or incident assigned name.	TRANSPORT TEAM INFORMATION	e or Call Sign: Record ICS Position: ICS position of the transport boat/vehicle/aircraft. Data Recorder: Record information for	name or identifying number. Indicate all areas of assignment. (Ex: Wildlife, Task Force 1, Strike the person filling out this form.	eck appropriate box. Team 1 or WL TF1, ST1).	LOG INFORMATION	Batch Tag Number: Pre-printed number on the Carcass Chain of Species: Find this information on the Carcass Collection Form or ask the Carcass	Collection Team.	ed the Carcass(es) FROM: Transporter Gave the Carcass(es) TO:	Write the name of the signatory (From/Release) on the Carcass Chain of Write the name of the signatory (To/Receipt) on the Carcass Chain of Custody Tag,	Custody Tag, their transportation name or call sign, and their affiliation or their transportation name or call sign, and their affiliation or ICS position. Date/Time	me that the carcass was received. Include AM or		THIS EDBM STANS MITH THE TOO SWEET	
Incident Name: Incident-specific assigna		Transportation Name or Call Sign: Record	boat/vehicle/aircraft name or identifying number.	Transport Type: Check appropriate box.		Batch Tag Number: Pre-printed number	Custody Tag.	Transporter Received the Carcass(es) FROM	Write the name of the signatory (From/R	Custody Tag, their transportation name of	ICS position. Date/Time that the carcass was	PM.		

 \odot

ACS maintains an initial stabilization facility consisting of air-transportable modules stored at Prudhoe Bay.

FACILITY CAPABILITIES

DESIGN CONSIDERATIONS

- Initial stabilization of up to 500 ducks or 250 geese
- Long-term treatment of up to 10 birds

FACILITY CAPABILITIES

- · Gross oil decontamination
- · Take vital statistics
- Blood work
- Rehydration
- Stabilization

MOBILIZATION TIME

- 4 to 6 hours (longer if facility needs to be transported to remote site)
- 2 personnel are required for shipping or setup

DEPLOYMENT CONSIDERATIONS

TRANSPORTATION MODES:

- Truck
- Hercules C-130 or similar aircraft
- Modules have fork pockets for lifting
- · Modules will be placed on a lowboy trailer for loading into the aircraft.

MODULE DIMENSIONS AND WEIGHTS

	WIDTH	LENGTH	HEIGHT	WEIGHT
Lab Module	9 ft 8 in.	13 ft	8 ft 7 in.	2,500 lbs
Utility Module	9 ft 8 in.	15 ft	8 ft 7 in.	3,800 lbs
Accessories Conex	8 ft	20 ft	8 ft	5,100 lbs

SETUP CONSIDERATIONS/REQUIREMENTS

Electrical: 208 volt, 3 phase, 20 Kw.

Water: Potable water is required. Center has its own pressure Wastewater: system. Facility has a 2,000-gallon portable holding tank.

Flooring: Concrete floors or liner that can be washed down to prevent the spread of disease.

Heating: Must be capable of maintaining an air temperature of 68°F to 70°F.

Building Size: A warehouse with minimum of 7,000 sq. ft. Ventilation:

A minimum of six air exchanges per hour, while maintaining 68°F to 70°F inside air temperature.

ALASKA CLEAN SEAS WILDLIFE STABILIZATION CENTER

CCS Clarko cleary seps

ACS Tech. Manual Vol. 1.12/20

Existing Compressor Room

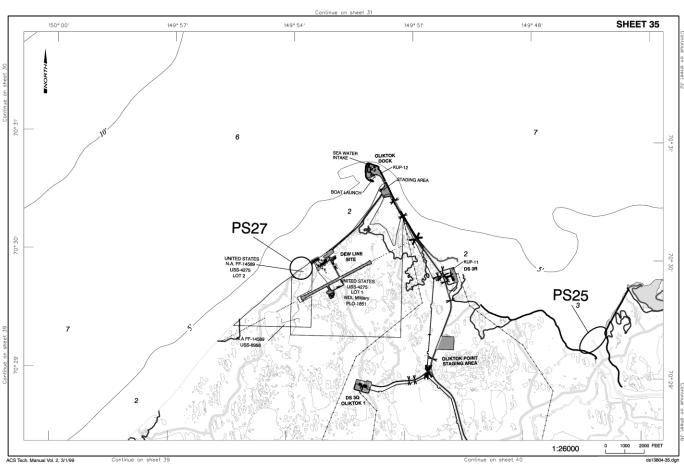
Utility Module

-ab Module

26 cu ft Type Deep

3,

PBE in Greater Prudhoe Bay. matting, sump pumps, etc. is not


drawing indicates layout for Building U-8 nce of floor area with bird holding cages,

ains a 60-ft x 150-ft fab

shipping conex kaged bird cag

SAMPLE ACS ATLASMAP

Volume 2 of the *Alaska Clean Seas Technical Manual* contains a map atlas of the North Slope oil fields and vicinity. These maps* and their accompanying legend pages identify sensitive-area locations for priority protection in the event of a spill. The locations on these maps are ones that can be defended by exclusion or deflection tactics. Also included on the map legend pages are general statements of environmental sensitivity — e.g., presence of birds or marine mammals — provided by the Alaska Regional Response Team (ARRT) and Arctic and Western Alaska (AWA) Area Committee Sensitive Areas Working Group.

It is important to remember that detailed protection strategies and incident-specific protection priorities will be developed by the Unified Command at the time of the spill. In evaluating the sites that must be protected, the Unified Command will apply criteria developed by the ARRT Sensitive Areas Working Group with representatives from State and Federal agencies and the private sector. The following relative priority listing prioritizes resources into designations of major, moderate, and lesser concern. Resources are not prioritized within each designation. These designations are for consideration in initial spill response activities; they are not applicable to extended cleanup activities. Specific guidance to On-Scene Coordinators for protecting cultural resources is contained in Appendix V of the Alaska Regional Contingency Plan.

The following criteria were developed as a tool to establish levels of concern.* These criteria are not listed in a priority order. (This information was excerpted from the Sensitive Areas section of the former Alaska Regional Response Team North Slope Subarea Contingency Plan. Please refer to the latest version of the Arctic and Western Alaska Area Contingency Plan (AWA ACP) for any revisions or updated criteria.

- · Human economic disruption economic/social value; human food source disruption
- Mortality wildlife, fish, other organisms (how many potentially killed in relation to abundance)
- Animal displacement and sensitivity to displacement
- Aesthetic degradation

*NOTE: Base maps for Volume 2 are provided by Alaska Clean Seas and the ACS Member Companies for oil spill contingency planning and response purposes. While every effort has been made to ensure an accurate depiction of surface features, ACS and the Member Companies do not warrant that the data is accurate or fit for any other use or purpose.

- Habitat availability and rarity
- Sublethal effects, including sensitivity to physical or toxic effects of oil or hazardous substances and long-term effects to habitat, species, or both
- Threatened and endangered species, and/or other legal designation
- Persistent concentration of oil or hazardous substances
- Reproduction rate or recolonizing potential
- Relative importance to ecosystem
- Potential for physical contact with spill pathway of oil or hazardous substance
- · Resource sensitivity to response countermeasures

AREAS OF MAJOR CONCERN

Shoreline Geomorphology - Coastal Habitat

Types: River deltas

Sheltered lagoons

Open lagoons

Salt marshes

Mud flats

Barrier islands

Spit beaches

Protected bays

Inland Habitat

Types: Riparian willow Connected

lakes Freshwater

springs

- · Threatened or Endangered Species Habitat
- Spotted Seal Haulout Areas (>10 animals)
- · Ringed Seal Lairs and Pupping Areas
- · Walrus Haulout Areas
- Beluga Whale Concentration Areas
- Bowhead Whale Nearshore Migration Routes
- · Polar Bear Denning and Feeding Areas
- · Caribou Calving and Insect Relief Areas
- Large Seabird Colonies (>100 birds)
- · Waterfowl and Shorebird Spring and Fall Concentration and Staging Areas
- Waterfowl Molting Concentration Areas
- Anadromous Fish Spawning and/or Rearing Streams

(i.e., salmon, Dolly Varden, whitefish)

· Land Management

Designations Federal:

Wilderness

Wild and Scenic Rivers

National Natural Landmarks

Research Natural Areas (Toolik Lake, Galbraith Lake)

Cultural Resources/Archaeological

Sites: National Historic Landmarks

Burial Sites

National Register Eligible Village Sites

Intertidal Sites

- Subsistence Harvest Areas
- High Commercial Use Areas
- High Recreational Use Areas
- River Floodplains

(Continued on next page)

(Continued from previous page)

AREAS OF MODERATE CONCERN

Shoreline Geomorphology - Coastal Habitat

Types: Beaded tundra streams

Upland Habitat
 Types: Drained
 lake basins

- Spotted Seal Haulout Areas (< 10 animals)
- · Ringed Seal Shorefast Ice Concentration Areas
- · Seabird Colonies (10 100 birds)
- Waterfowl and Shorebird Nesting Concentration Areas
- Shorebird Molting Concentration Areas
- Bear Concentration Areas (marine mammal/carcasses; salmon)
- Polar Bear General Distribution
- · Walrus General Distribution
- Caribou Migration Routes
- Muskox Riparian Habitat
- · Commercial Harvest Areas
- · Recreational Use Areas
- Land Management

Designations Federal:

National Parks

National Wildlife Refuges

Cultural Resources/Archaeological

Sites National Register Eligible Sites

(Other Than Village Sites)
Sites Adjacent To Shorelines

AREAS OF LESSER CONCERN

- Upland Habitat Types: Mesic/dry tussock tundra Alpine tundra
- · Bearded Seal General Distribution
- · Bowhead Whale General Distribution
- · Gray Whale Nearshore Migration and Feeding Areas
- Seabird Colonies (<10 birds)
- · Waterfowl and Shorebird General Distribution
- General Freshwater Fish Habitat
- Land Management

Designations Federal: Public

Lands

National Forests

National Preserves

State: General Public Lands

CULTURAL RESOURCE CONSIDERATIONS

DEFINITION OF "CULTURAL RESOURCES"

Federal and state law requires protection of cultural resources in the vicinity of the spill or response.

"Cultural resources" is a broad term used to refer to ruins, structures, sites, graves, artifacts, deposits, and/or objects that pertain to history or prehistory. The question is not whether someone thinks a resource has value, but whether the resource meets the criteria of federal or state law.

There are two kinds of impacts of concern during a spill response operation:

- Direct impact from spilled substances
- · Indirect impacts from ground-disturbing activities, vandalism, and theft

RESPONSIBILITIES

Cultural resource protection is primarily an agency responsibility. The duties of the responsible party in an oil spill are to:

- Be aware that cultural resources may exist in the response area.
- Recognize that their existence may affect how response is conducted.
- Cooperate with state and federal officials charged with cultural resource protection.
- Assure that all response personnel do not collect, remove, or disturb cultural resources encountered in a response in any way.
- Consider retaining a cultural resources specialist as a consultant to Planning Section in case of a significant spill.

SITE LOCATIONS

Because of federal law and state policy, the exact locations of cultural resource sites are not shown on ACS or member company maps. Known cultural resource sites on the North Slope have been mapped. Access to this information is restricted. Non-site-specific information on known cultural resources sites can found in the Area Contingency Plans. In a responsible party-funded response to a spill, the FOSC will consult with appropriate ARRT members regarding cultural resources which may be at risk from a spill or response.

Site-specific cultural resource surveys will be required in areas the State Historic Preservation Officer believes are not well-surveyed for sites.

Responsible parties and response teams should be particularly attentive to the possible existence of cultural resource sites at/on:

- Coastal barrier islands
- · Elevated terraces or cut-bank bluffs along rivers
- Pingos
- Most shoreline areas, particularly near embayments or promontories
- · Prominent hills inland

For detailed questions, consult the ARRT Alaska Regional Contingency Plan, Appendix V, and the Arctic and Western Alaska Area Contingency Plan.

Wildlife Reconnaissance (from WPG, 2020) (Page 2 of 6) TACTIC W-7

Objective and Strategy

- · Identify and locate any wildlife that may be present and affected by a spill or response activities.
- Incidental wildlife (marine or terrestrial mammal, bird, fish, and invertebrate) observations can be made by any spill responder. Systematic wildlife observations are the primary responsibility of Wildlife Observers.

Tactic Description

- Look for, record information, and report wildlife that are:
 - In oiled areas:
 - o In areas at risk of becoming oiled; and
 - o Where affected wildlife is likely to travel (e.g., onshore).
- At a minimum, report this information:
 - What kind, and how many? (e.g., flock of 10 ducks, pod of 5-10 killer whales, 3 large whales, 5 seals)
 - What were they doing? (e.g., flying away from response boats, feeding in the area, hauled-out, floating/sitting in the water, transiting in a northerly direction)
 - Where are they? (preferably latitude/longitude, but could also be description, e.g., "nearshore/shoreline approximately
 1 kilometer west of oil, in [name of] Bay")
 - o Any other details (e.g., degree of oiling).
 - o Photos and video are helpful.
- Wildlife Observers follow general or spill-specific protocols to systematically search for, identify, record, and report marine and terrestrial mammal, bird, fish, and invertebrate observations in the vicinity of the spill and response activities. They:
 - Survey numbers of wildlife using replicable methods;
 - Collect or verify baseline information;
 - o Identify priority species and habitats;
 - o Locate oiled individuals; and
 - o Monitor oil spill impacts on wildlife through time, including impacts on animal behavior.

Safety Considerations

- Bear guards should be used when working on land or in near-shore environments when bears may be present, or as outlined in the incident- specific Safety Plan.
- Observers should exercise situational awareness depending on their observation platform. For example, slips, trips, and falls are a particular hazard on land and Personal Floatation Devices should be worn on vessels.
- Traveling on steep or unstable surfaces (cliffs, mud, exposed slopes, shoreline rocks with surf, etc.) should be avoided.
- Personal protective equipment (PPE; e.g., oil-resistant outerwear such as Tyvek coveralls) will be outlined in the incidentspecific Safety Plan and is dependent on the potential exposure to oil in the observing environment.

Operational Considerations

Operating Environments, Geographic Considerations and Access

- Wildlife observation may be performed in all environments where a spill can occur (inland; on lakes, streams, and rivers; on marine shorelines; and in the marine nearshore and open-water environments).
- Observers may operate from one or more platforms, including on foot, in a vehicle or vessel, or by aircraft.
- · Observers must avoid unnecessary disturbance to wildlife while conducting wildlife observations.
- Use of unmanned aircraft systems (UASs or drones) is not covered in this Tactic.

Species Type and Life Stage

- Incidental wildlife observations can be made by any responder, from any platform.
- Wildlife Observers may use species-specific or platform-specific protocols, such as marine mammal shipboard surveys or waterfowl aerial surveys.
- Be aware of species-specific requirements for non-approach zones (setback distances), sensitive time periods, and other factors to prevent or minimize disturbance.

Communications

- Ensure all forms are accurate and complete at the end of each shift.
- Incident-specific observation or survey protocols may identify specific communication requirements such as reporting thresholds to Unified Command and wildlife agencies.
- All responders can report wildlife observations through their supervisor to the Unified Command. Reports should include (at minimum):
 - o What kind, and how many? (e.g., flock of 10 ducks, pod of 5-10 killer whales, 3 large whales, 5 seals)
 - What were they doing? (e.g., flying away from response boats, feeding in the area, hauled-out, floating/sitting in the water, transiting in a northerly direction)
 - o Where are they? (preferably latitude/longitude, but could also be a description, e.g., "nearshore/shoreline approximately 1 kilometer west of oil, in [name of] Bay")
 - Any other details (e.g., degree of oiling).
 - o Photos and video are helpful.
- Wildlife Observers will follow incident-specific protocols for providing forms to USFWS, NMFS, ADF&G, and the Documentation Unit.

Equipment, Vehicles or Vessels, and Personnel for Wildlife Recon Tactic

EQUIPMENT	QUANTITY	FUNCTION / NOTES
Binoculars	1	Observe and identify wildlife.
GPS (with track-line function if available)	1	Set to Datum WGS84. Track-line can be uploaded to GIS.
Camera (with geo- referencing if available)	1	For documenting large groupings or significant observations. Geo-referenced photographs can be uploaded to GIS.
Wildlife Observation Forms	10	Print Wildlife Observation Forms on water- resistant (Rite-in-Rain®) paper, for filling out in field or for transferring device app information, if that is required. Observations may be collected using devices (tablet computer, cell phone). Device apps may be developed for an incident.
Incident-specific Wildlife Observation Protocol	1	Allows designated Wildlife Observers to collect comprehensive and scientifically defensible Wildlife Observations. If no incident-specific plan developed, follow Wildlife Recon Tactic.
Pens/pencils	5 each	
PPE	As needed for each responder	Protect personnel from platform-specific hazards. Platform-specific (e.g., personal flotation device for boat-based surveys)

VESSEL / VEHICLES	QUANTITY	FUNCTION / NOTES
Varies. May include trucks, ATVs, boats, or aircraft.	Varies with incident	Enable Wildlife Observers to access survey area and conduct survey.

PERSONNEL	TACTIC-SPECIFIC	QUANTITY	FUNCTION / NOTES
	TRAINING		
Field Team Leader	Experience using binoculars to find and identify wildlife, and experience and training in identifying wildlife species in Alaska.		Serves as primary Wildlife Observer; supervises field operations and is responsible for communication with Unified Command.
Wildlife Observer	Same as Field Team Leader	Varies with incident	Observe wildlife; record data.
Any Responder			Communicate any wildlife observations, especially in first 24-48 hours of spill, to supervisor or Unified Command.

Developed from the Wildlife Protection Guidelines for Oil Spill Response in Alaska (WPG), Section 9740.3.2.

Wildlife Reconnaissance (from WPG, 2020) (Page 4 of 6) TACTIC W-7

IMPLEMENTATION

All Responders: Report wildlife observations through supervisor to Unified Command, including (as practicable):

- 1. What kind, and how many? (e.g., flock of 10 ducks, pod of 5-10 killer whales, 3 large whales, 5 seals)
- 2. What were they doing? (e.g., flying away from response boats, feeding in the area, hauled-out, floating/sitting in the water, transiting in a northerly direction)
- **Where are they**? (preferably latitude/longitude, but could also be a description, e.g., "nearshore/shoreline approximately 1 kilometer from oil, in [name of] Bay")
- 4. Other relevant details (e.g., degree of oiling, if observed).
- **5.** Photos and video are helpful.

Wildlife Observers

- 1. Preparation:
- a. Determine appropriate observation platform and ensure that Wildlife Observers have all required platform-specific training and PPE (e.g., Personal Floatation Device for boat-based recon).
- o. Obtain and review standard survey methods for specific platform or any incident-specific survey protocols. Obtain Permits and Authorizations (if needed) for specific method/protocol. Obtain landowner permission if required.
- c. Obtain equipment, Wildlife Observation Forms (print on Rite-in-the- Rain® or other water-resistant paper).
- d. Obtain map/charts/aerial photos of area to be surveyed.
- e. Coordinate with Mapping Specialist as needed to determine incident- specific format of any electronic data such as track-lines, waypoints, data file transfers, geo-referenced photos, etc.
- f. Coordinate timing of surveys through Operations to ensure platforms and resources are available and to prevent interference with other response activities.

2. Field Implementation:

- a. Conduct surveys, record on map the area travelled and surveyed, take photographs.
- b. Follow instructions on back of Wildlife Observation Form while filling them out and ensure documentation is complete and accurate at the end of each shift.
- c. For long term events, establish a routine and consistent survey schedule.

3.	Deliverables ((end-of-shift

	Completed	Wildlife	Observation	Form(s)	for	each area	surve	/ed.
--	-----------	----------	-------------	---------	-----	-----------	-------	------

- ☐ Map of areas travelled and surveyed.
- Any other documentation required by incident-specific protocols and formats.
- SD cards, cameras, and GPS units turned in or data downloaded.

Notes:

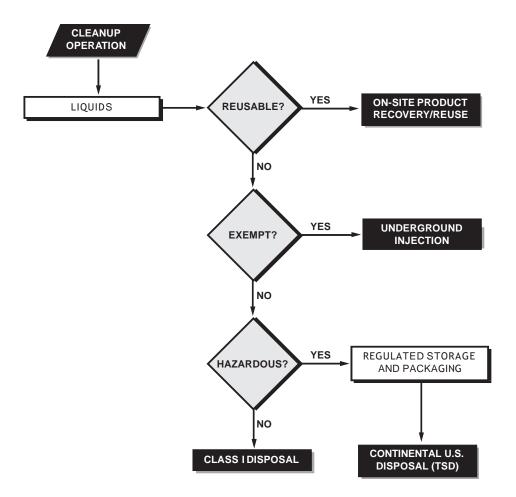
Related Tactics

Carcass Collection – see Tactic W-4 Carcass Collection (from WPG, 2020)

References

None in this version.

Wildlife Observation Form (on following pages)


- A printable version of this form is available on the on the ADEC <u>Area Plan References and Tools</u> web page.
- · Print landscape orientation on both sides of one sheet of water- resistant paper.

Nem Men	Return form(s) to Supervisor, Wildlife Branch, or wildlife agency representative	n form(s) to Supervisor, Wildlife Branch, or wildlife agency representative					Date (MIN/DD/YYYY):	Use Only):
ICS Position (Group, name if no ICS Position):	ICS Position (Group, Task Force, Strike Team, or name if no ICS Position):		other L	Lead Observer Name & Employer (Phone & Email if no ICS Position): Training/Experience:	Employer (Pl	none & Eme	ili if no ICS Position):	-
Other Obser	Other Observer(s) Names & Employers:	vloyers:						
General Location:	ation:	GPS Datum: NAD27 □:		WGS84 (preferred) □: NAD83 □)83 🗆 ;	Camera GPS & S	Camera & SD Card ID #: GPS & SD Card ID #:	
For surveys,	For surveys, GPS Trackline File Name.	Name:		Total di	Total distance surveyed:	veyed:	mi □ or km □	
OBSERVATI	OBSERVATION INFORMATION							
Platform: On foot □ Vessel □ Aircraft □	n foot □ Truck/4-wheeler □ rcraft □ Other □		fform D	Platform Description:				
Cloud Cover (%)	31	Wind Speed mp	ph 🗆 kr	mph ☐ knots ☐ OR Beaufort Wind Scale (1-6):	ind Scale (1-6):	Direction wind is blowing from:	ng from:
Precipitation	Precipitation: None ☐ Fog/Mist ☐ Light Rain ☐ Heavy Rain ☐ Snow ☐	☐ Light Rain ☐ He	eavy Ra	in 🗆 Snow 🗆		Visibility	Visibility: Excellent ☐ Good ☐ Fair ☐ Poor ☐	□ Poor □
Time	Latitude (decimal degrees)	Longitude (decimal degrees)	(\$	Species/ Species Group	ID Certainty	# of Animals	Details	
EXAMPLE 0805	57.70818 N	-52.32819 W	Se	seabirds	certain	18	mixed seabird flock incl 10 least auklets; feeding, not traveling, 2 km from oil, no visible oiling, WP 33	east auklets; rom oil, no
							START SURVEY (write time, location)	ne, location)
			8 8					
			š - 3			8		
			8 8			8 8		
			8					

				END SURVEY (write time, location)	ervati	ICS Position: ICS Position of Wildlife Lead Observer: Record information for lead Wildlife Coserver (person with the most training/experience). Training/Experience: May include but not be limited to applicable degree, employer training, USFWS/NMFS training, etc.	ord information for General Location	d IDs: Write ID numbers of assigned camera GPS Trackline File Name: For incident-rds (memory cards).	Platform Description: Record type, name, and identifying numbers/letters of vessel/vehicle/aircraft. If Other, Cloud Cover: Estimate provide details in description.	Direction wind is	ripples 2: 4-7 mph, light breeze, wavelets 3: 8-12 mph, gentle breeze, large wavelets, some breaking Precipitation : Check one. crests 4: 13-18 mph, moderate breeze, small waves, many whitecaps 5: 19-24 mph, fresh breeze, 6-9 ft Visibility : Check one. Excellent = unlimited; poor =	waves, some spray 6 : 25-31 mph, strong breeze, large waves with spray > 6 : 32+ mph	Latitude and Longitude: Decimal Degrees preferred. Regardless of format used, include any decimals and symbols for degrees/minutes/seconds. If no GPS unit is available, describe observation location as detailed as possible.	Details: Note any addition or sex of animals; behaving photo numbers; record of Degree of ciling records:
					:	Incident Name and Date: Fill out.	Other Observer(s): Recother Wildlife Observers.	amera/GPS & 9nd GPS unit and	Platform: PI Check one. pr	Vind Speed: Re	pples 2 : 4-7 m; rests 4 : 13-18 r	aves, some spra	Time: 24- La hour format. inc	Certainty: CE If the species or ou have some quality of the species from t

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK	

Liquids from cleanup operations include liquid oil; mixtures of oil, water, snow, ice, and/or gravel; used engine oils and hydraulic fluids; contaminated fuels; bilge/ballast waters; stormwater runoff from waste storage areas; and washwaters from decontamination operations.

Do not mix liquids from different sources until classification is confirmed. Mixed wastes can be difficult and expensive to manage. Materials are classified by qualified personnel and segregated until classification is confirmed.

Spill responders must request permission from the pipeline or production facility operator in order for the pipeline or production facility to receive recovered liquids. Note also that users of BPXA/CPAI facilities are pre-approved and may have specialized training in handling of wastes. Loads must be accompanied by the appropriate documentation.

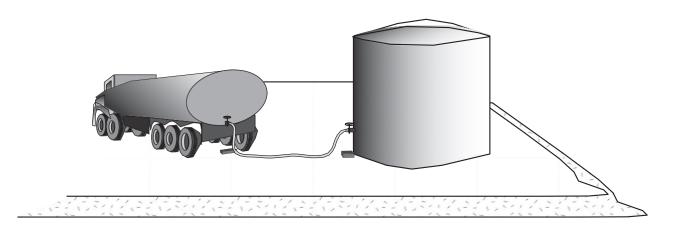
Fluids and solids from spill cleanup operations are considered either:

- Reusable products, which can be recovered and returned to service, or
- Wastes, which must managed according to applicable permits, regulations and policies.

REUSABLE PRODUCT

Products that can be recovered and reused are not considered wastes, but must still be managed properly. Examples of reusable fluids include:

- Crude oil returned to the production stream
- Refined hydrocarbons (fuels, lubrication oil) returned to the production stream (note that policies on refined hydrocarbon recycling are not the same in all operating areas)
- Water, seawater, other approved fluids injected underground for enhanced oil recovery (EOR)
- Crude, diesel, methanol reserved for well work or other field operations.



FACILITIES FOR HYDROCARBON RECOVERY AND ENHANCED OIL RECOVERY

LOCATION	FACILITY	OFFLOADING LOCATION (TRUCKS)
Kuparuk River Unit	CPF-1 hydrocarbon recycle facility	CPF-1
Kuparuk River Unit	CPF-1 water recycle facility	CPF-1
Greater Prudhoe Bay Area	FS 1, GC 2	Slop oil tank, Dirty water tank
Milne Point Unit	Production facility	ORT (Oil Reserve Tank)
Endicott	Production facility	Snowmelt tank
Badami	Badami Class I Well B1-01 (if recycling is not possible)	Badami Class I injection skid
	Production facility	Badami CPU
Alpine	Production facility	A1 sump
Northstar	Production facility	Designated sumps, Well cleanuptank
Alyeska PS-1	PS-1	PS-1 injection skids

¹Contact the facility/asset environmental staff for detailed information, or refer to the Alaska Waste Disposal and Reuse Guide.

Fluids that can be used for well work or other field operations are recovered and stored in designated locations, as directed by asset environmental personnel.

WASTE FLUIDS

Wastes are subdivided into three major categories:

- RCRA-exempt (includes exemptions for oil and gas)
- Non-exempt, non-hazardous
- Hazardous

Wastes that are managed by underground injection are further classified according to the type of permit held by the injection facility.

- Class II wells are generally restricted to RCRA-exempt wastes that have actually originated in, or circulated through, an oil and gas wellbore. Co-mingled fresh water, seawater, or process additives may also be acceptable
- Class I wells are authorized to inject a variety of exempt or non-exempt, non-hazardous wastes. They may also accept Class II wastes.

Class I and Class II waste fluid disposal facilities are listed on the following tables. Note that each facility must comply with permits, regulations, ballot agreements, and operational constraints.

CLASS I DISPOSAL FACILITIES¹

LOCATION	FACILITY	OFFLOADING LOCATION (TRUCK)
Kuparuk River Unit	None - Use Pad 3 (Prudhoe) or evaluate for EOR	CPF 1 (EOR) or Pad 3
Greater Prudhoe	Pad 3	Pad 3 injection skid
Bay Area	G&I (Grind & Inject) Facility (DS-4)	DS-4 injection skid
Milne Point Unit	MPU Class I Well B-50	B-50 wellhead
Endicott	None - Evaluate for EOR or Pad 3 (Prudhoe)	Snowmelt tank (EOR) or Pad 3
Badami	Badami Class I Well B1-01 (Pad 3 as backup)	Badami G&I plant
Alpine	Alpine Class I Well WD-2 (Pad 3 as backup)	L2 injection hookup
Northstar	Northstar Class I Well NS-10, NS-32	Northstar G&I plant or designated sumps
Alyeska PS-1	None - Use Pad 3 (PBE) or evaluate for recycling at PS-1	

¹Contact the facility/asset environmental staff for detailed information, or refer to the Alaska Waste Disposal and Reuse Guide.

CLASS II DISPOSAL FACILITIES (LIQUIDS)1

LOCATION	FACILITY	OFFLOADING LOCATION (TRUCK)		
Kuparuk River Unit	CPF-1 oily waste disposal facility	CPF-1 oily waste injection skid		
	Pad 3 (PBE)			
Greater Prudhoe	G&I (Grind & Inject) Facility (DS-4)	DS-4 injection skid		
Bay Area	Flow Station 1	Injection skid		
	Pad 3	Pad 3 injection skid		
	GC 2	Dirty water tank		
Milne Point Unit	MPU Class I Well B-50	B-50 wellhead		
Endicott	Well P-18/2-02	2-02 injection skid		
Badami	Badami Class 1 Well	Badami G&I plant		
	Pad 3 (Prudhoe)			
Alpine	Alpine Well CD1-19A	Temporary hookup, as needed		
Northstar	Northstar Class I Well NS-10, NS-32	Northstar G&I plant or designated sumps		

¹Contact the facility/asset environmental staff for detailed information, or refer to the Alaska Waste Disposal and Reuse Guide.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFTT	MOBE TIME	DEPLOY TIME
Divert Tank or Facility Slop Oil Tank	Operating fields	Oil recovery or storage	1	_	0.5 hr	
Vacuum Truck or Fastank	All	Liquid transport	1	1	1 hr	0.5 hr
Snow Melter	PBE, Alpine	Snow melting	1	2	2 hr	2 hr
Recycling Facility	See above	Liquid recycling	1	1	_	_
Disposal Facility	See above	Liquid disposal	1	1	_	_

TOTAL STAFF

SUPPORT

Decisions about waste management are made by the asset environmental staff and, in a major incident, the Environment or Waste Management Unit Leader.

Support activities may include:

- Construction and management of temporary storage areas
- Transportation (tanker trucks, dump trucks, vacuum trucks, loaders)
- · Manifesting and document control

ASSET CONTACTS FOR WASTE MANAGEMENT

LOCATION	CONTACT	PHONE	MOBILE / PAGER
Alyeska PS-1	Field Environmental Coordinator	907-659-1085 / 907-787-4185	
Alpine	Environmental Coordinator	907-670- 4200	Pager 907-670- 4930 x6718
Kuparuk River Unit	Field Environmental Coordinator	907-659-7212 / 7242	Pager 907-659-7000, x669
Badami	Environmental Specialist	907-659-1350	
Eni Nikaitchuq	Environmental Coordinator	907-685-1457	
Eni Oooguruk	Environmental Coordinator	907-670-6625	
ExxonMobil Point Thomson	Field Environmental Specialist	907-685-3559	
Endicott	Environmental Specialist	907-659-6810	
Northstar	Environmental Specialist	907-670-3508	
Milne Point Unit	Environmental Specialist	907-670-3382	
GPB Area	Environmental Specialist (Power & Gas)	907-659-5893	Harmony 2332
GPB Area	Environmental Specialist (East)	907-659-5999	Harmony 2328
GPB Area	Environmental Specialist (West)	907-659-4789	Harmony 2329
GPB Area	Waste Coordinators	907-659-4810	
GPB Area	Waste Technicians	907-659-4705	

CAPACITIES FOR PLANNING

- · Liquid processing capacity of recycling and disposal facilities is facility- and incident-specific, and the asset environmental staff should be contacted in the event of an incident.
- Vacuum trucks travel at 35 mph; their storage capacity is 300 bbl.

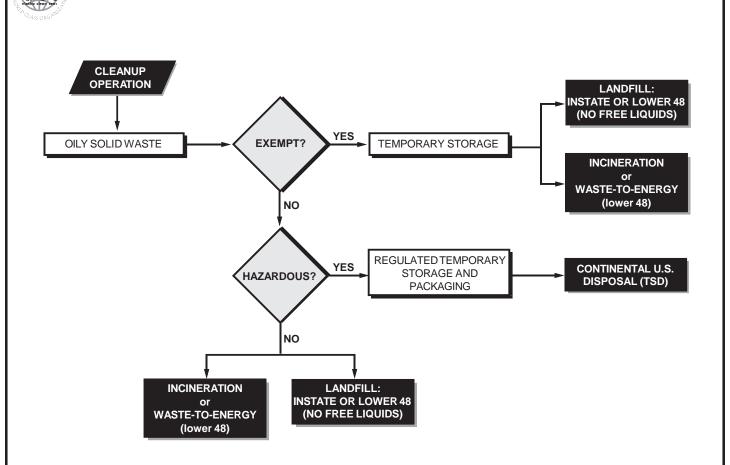
TECHNICAL CONSIDERATIONS

- Spills at production facilities may be collected in facility sumps and, if appropriate, hard-piped directly to the process location. Otherwise, fluids are generally delivered to the facilities by tanker truck and offloaded to a designated dirty water tank or slop oil tank.
- In most cases, hydrocarbons are separated and routed to the production stream, while aqueous fluids are sent to EOR or disposal wells. Water-handling capacity is facility-specific. Alyeska ultimately determines how much aqueous fluid may be co-mingled with crude in the Trans-Alaska Pipeline System (TAPS).
- Fluid disposal or recycling rates are affected by:
 - Hauling capacity (number of available tanker trucks)
 - Offloading rate at facilities (limited by pump capacity, solids content)
 - Storage capacity
 - -_Facility processing/injection rates
- The most critical factors are hauling capacity and offloading rates. Receiving facilities usually have intake screens that become plugged by excess solids or oversized materials. Pre-screening and solids separation may be
- Each disposal/recycling facility has operational and legal restrictions that affect what can be accepted:
 - Physical limitations (particle size, solids content, offloading rate, capacity)
 - Safety considerations (flash point, pH)
 - Permit/regulatory restrictions (waste classification, storage requirements, Area Injection Orders)
 - Ballot agreements or other legal stipulations (may exclude certain users)
 - Operating procedures (site-specific paperwork and training requirements)
- · Facility personnel have the authority to reject any material that does not meet their operational and safety crite-

ENVIRONMENTAL CONSIDERATIONS

- These guidelines apply to all recovery, storage, transfer, and disposal operations.
 - Maintain communications with ICS Environment Unit staff who determine how wastes will be managed.
- Ensure all necessary permits and approvals are in place for storage, transportation and disposal, and that any/all stipulations are understood by response personnel.
- Do not dispose or recycle without accurate volume tracking (manifests) and regulatory agency approval.
- Manage recovery and storage operations as necessary to contain secondary spills, minimize contact with precipitation and runoff, and protect uncontaminated areas.
- Segregate wastes of different types to the extent possible.
- Do not discharge any wastes to land, tundra, or water without explicit approval.

PERMIT REQUIREMENTS


Temporary storage areas may be constructed of soil, snow, ice, or timbers in conjunction with liners providing adequate secondary containment and runoff control. This tactic is intended to be a pre-approved method of oily waste storage for emergency response. Confirm requirements with the Environment Unit. The following steps must be taken:

- Wastes must be stored in covered, leakproof containers that are constructed of impermeable materials or constructed containment fully lined with an impermeable synthetic liner.
- Before implementation of this tactic, ADEC must be notified of the storage method selected by contacting the State On-Scene Coordinator with the following information:
- (a) The location of the spill, type of product involved, estimated quantity spilled, and estimated quantity of oily waste generated.
- (b) The reason temporary storage is necessary.
- (c) A description of the storage method(s) planned and the location(s) of storage.
- (d) The anticipated length of time temporary storage will be necessary.
- (e) A description of the method(s) planned for transportation of oily waste to an approved disposal site.
- (f) The planned method(s) for ultimate disposal of recovered waste.
- Storage is pre-approved for a maximum of 60 days. This period of time may be extended with ADEC approval based upon a showing of good cause and absence of harm to the environment. A written request must be submitted two weeks prior to expiration of the 60-day period.
- Where possible, temporary storage structures must be located at least 100 feet away from water bodies.
- During periods of temporary storage, waste storage structures must be visually monitored on a routine basis to ensure no leakage is occurring. If leakage is detected, then ADEC's Exploration, Production and Refineries Section must be notified immediately.
- No physical construction of temporary containment structures that may result in environmental damage is allowed under this approval, unless prior consent is obtained from appropriate federal and state authorities.
- Any environmental damage resulting from storage operations must be reported to ADNR and NSB, and repaired.

Oily solids that cannot be managed (landfilled) on the North Slope are shipped to other approved landfill disposal facilities in Alaska or the continental United States. Continental U.S. disposal options include landfill, waste-to-energy or incineration.

Oily wastes are not to be burned by response personnel without appropriate agency approvals or permits. Open burning may be approved by ADEC and other agencies on a case-by-case basis by permit.

Oiled wildlife must be handled as directed by agency personnel. It may be necessary to store carcasses in freezers for future examination. Disposal will usually be by incineration at approved facilities in the lower 48.

CLASSIFICATION OF OILY SOLID WASTES

Oily solid wastes include oiled clothing and personal protective equipment, used sorbent material, discarded response equipment, and construction materials. Oiled animal carcasses may also be present. Offshore recovery operations may generate mousse patties, asphalt patches, and tarballs. Contaminated gravel is discussed in a separate tactic.

Solid wastes must be classified by qualified personnel and segregated until classification is confirmed. Representative samples may be required for hazardous waste characterization. The environmental staff will set up the sampling program. Contaminated solids generally have the same classification as the material that was spilled, and are managed accordingly.

COLLECTION METHODS

Oily solids are typically collected in plastic bags and leakproof bulk storage containers (Fastanks, lined dumpsters, plastic totes, drums). A limited number of oily waste dumpsters can be provided by the North Slope Borough (NSB); these can be supplemented by tiger tanks, collapsible tanks, fabricated containers, or barges.

Plastic bags and other containers are labeled or otherwise coded for sorting. Follow the labeling and coding scheme developed for each incident.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Front End Loader with Forks	All	Placement of timbers	1	1	1 hr	0.5 hr
Pit Liner* (varying sizes)	All operating areas, Deadhorse	Storage liner	1	Size- dependent	1 hr	1 hr
Timbers (8"x8" or 12"x12")	All operating areas, Deadhorse	Non-liquid storage	Variable	2 for setup	1 hr	1 hr
Tanks (Tiger, inflatable, collapsible, Fast)	All operating areas, Deadhorse	Non-liquid storage	1	2 for setup	1 hr	1 hr
Open-Top Drum	All operating areas, Deadhorse	Non-liquid storage	1	1 for setup	0.5 hr	0.5 hr
Oily Waste Bags	All operating areas, Deadhorse	Non-liquid storage and disposal	Variable	_	0.5 hr	0.5 hr
Lined Dumpsters	All operating areas, Deadhorse	Non-liquid storage	1	2 to install liner	0.5 hr	0.5 hr
RCRA Storage Container	All operating areas, Deadhorse	Non-liquid hazardous material disposal	1	_	0.5 hr	0.5 hr

TOTAL STAFF FOR SETUP

TOTAL STAFF TO SUSTAIN OPERATIONS

SUPPORT

Decisions about waste management are made by the asset environmental staff and, in a major incident, the Environment or Waste Management Unit Leader.

ASSET CONTACTS FOR WASTE MANAGEMENT

LOCATION	CONTACT	PHONE	MOBILE / PAGER
Alyeska PS-1	Field Environmental Coordinator	907-659-1085 / 907-787-4185	
Alpine	Environmental Coordinator	907-670- 4200	Pager 907-670- 4930 x6718
Kuparuk River Unit	Field Environmental Coordinator	907-659-7212 / 7242	Pager 907-659-7000, x669
Badami	Environmental Specialist	907-659-1350	
Eni Nikaitchuq	Environmental Coordinator	907-685-1457	
Eni Oooguruk	Environmental Coordinator	907-670-6625	
ExxonMobil Point Thomson	Field Environmental Specialist	907-685-3559	
Endicott	Environmental Specialist	907-659-6810	
Northstar	Environmental Specialist	907-670-3508	
Milne Point Unit	Environmental Specialist	907-670-3382	
GPB Area	Environmental Specialist (Power & Gas)	907-659-5893	Harmony 2332
GPB Area	Environmental Specialist (East)	907-659-5999	Harmony 2328
GPB Area	Environmental Specialist (West)	907-659-4789	Harmony 2329
GPB Area	Waste Coordinators	907-659-4810	
GPB Area	Waste Technicians	907-659-4705	

Within developed operating areas, oily waste can be transported to storage areas by front-end loaders and end dumps. Rolligon or helicopter transport may be used for remote sites. Offshore operations require marine transportation.

Storage and Disposal of Non-Liquid Oily Wastes (Page 4 of 4) TACTIC D-2

CAPACITIES FOR PLANNING

The average end dump on the North Slope can hold 20 cu. yd and travels at 35 mph.

TECHNICAL CONSIDERATIONS

- Each disposal/recycling facility has operational and legal restrictions that affect what can be accepted:
 - Physical limitations (particle size, solids content, offloading rate, capacity)
 - Safety considerations (flash point, pH)
- Permit/regulatory restrictions (waste classification, storage requirements)
- Ballot agreements or other legal stipulations (may exclude certain users)
- Operating procedures (site-specific paperwork and training requirements).
- Facility personnel have authority to reject any material that does not meet their operational and safety criteria.

ENVIRONMENTAL CONSIDERATIONS

- These guidelines apply to all recovery, storage, transfer, and disposal operations:
 - Maintain communications with Environment Unit staff who determine waste management.
 - Make sure all necessary permits and approvals are in place for storage, transportation, and disposal, and that stipulations are understood by response personnel.
- Manage recovery and storage operations as necessary to contain secondary spills, minimize contact with precipitation and runoff, and protect uncontaminated areas.
- Segregate wastes of different types to the extent possible.
- Do not discharge any wastes to land, tundra, or water without explicit approval.

^{*}Pit and bed liner 8218 LTA polyester fabric with 18 ounce per square yard finished coat weight and -67 degrees Fahrenheit cold crack, and compatible with crude oil.

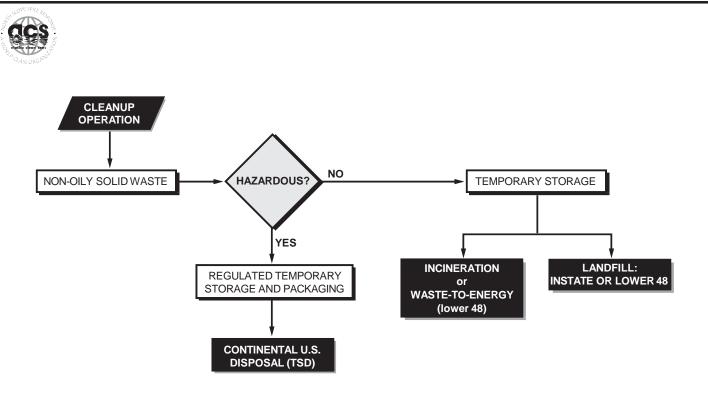
LIQUID WASTES

Domestic sewage and graywater are generated at crew support facilities. Sources include toilets, laundries, shower facilities, and kitchens. Treated wastewater may not be discharged to water, land, or tundra without a valid permit.

Options for disposal include:

- Existing wastewater treatment plants in each operating area (depending on available capacity)
- Class I injection (sewage and graywater are RCRA-exempt)
- EOR (currently approved for domestic wastewater at MPU and KRU; other assets require case-by-case agency approval)
- North Slope Borough wastewater treatment plant in Deadhorse
- Supplemental land- or barge-based treatment units (brought in for a specific incident)

Domestic wastewater plants cannot process wastewater that is heavily contaminated with oil, solvents, or other chemicals. Contaminated washwaters from laundries should be segregated and managed by underground injection or other appropriate methods.


HAZARDOUS WASTES

Hazardous waste liquids may include solvents, laboratory wastes, and unusable methanol or chemical products.

Hazardous waste, by definition, exhibits specific characteristics or is explicitly listed as hazardous waste by EPA. There are no facilities in Alaska for disposal of hazardous waste. Storage, packaging, transportation, and disposal are regulated by RCRA.

Hazardous waste must not be mixed with other wastes, and it must remain in the operating area where it is generated until transported to a regulated disposal facility in the continental U.S. Locations for temporary storage of hazardous waste will be established and managed by the asset environmental staff.

Any potentially hazardous waste must be segregated from other wastes until classification is confirmed by qualified personnel. Locations for temporary storage of hazardous waste liquids will be established and managed by the asset environmental staff. Hazardous waste must remain in the operating area where it is generated until transported to a regulated disposal facility.

SOLID WASTES

Non-oily solid waste includes garbage, paper products, Styrofoam food containers, plastics, glass, metals, and construction debris. General disposal guidelines are provided in the *North Slope Environmental Field Handbook*.

Solid wastes must be classified by qualified personnel, and segregated accordingly. Non-oily solid wastes will generally fall into the following categories:

- Recyclable materials: Recycling stations may be established for paper, styrofoam food containers, and wood. (No treated or contaminated wood is accepted at these stations.)
- Scrap metal: Scrap metal bins or collection points may be set up for non-oily scrap iron, pipe, copper, aluminum, stainless steel, metal cable, plate steel, and metal valves.
- Non-oily trash and food waste: Designated dumpsters or other containers will be provided for food waste and other non-oily trash. Loose trash must be bagged or covered to prevent dispersal by wind. All food waste must be controlled to avoid attracting wildlife. Non-burnable waste may include empty cans, tires, construction debris, and liner material. Oversized material may have to be cut or crushed to meet landfill restrictions. Disposal will be to permitted landfill in the North Slope, elsewhere in (no free liquids), or the lower 48.
- Hazardous waste: Temporary storage areas will be established as needed for hazardous waste and managed
 by trained personnel. Cleanup-related hazardous waste may include batteries (lithium, mercury, or ni-cad), light
 bulbs with screw-in bases, aerosol cans with product or propellant inside, various chemicals, and laboratory
 wastes. Hazardous waste determinations will be made by qualified personnel.

Wastes can be transferred to disposal facilities by truck or, as needed, Rolligons. Offshore operations require marine vessel support. The nearest solid waste disposal facility is the NSB Oxbow Landfill. However, due to the limited capacity of this facility and potential long-term liability issues, other disposal options will be considered on a case-by-case basis. These options may include municipal landfills elsewhere in Alaska, or approved disposal facilities (landfill, incinerator, waste-to-energy) in the Lower 48.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Front-End Loader and/or Bobcat	Loader: All Bobcat: ACS, PBE, KRU	Waste transport	1	1	1 hr	0.5 hr
Shovel	All operating areas, Deadhorse	Waste transport	<u>≥</u> 1	1	0.5 hr	0
Plastic Totes or Trash Bins	All operating areas, Deadhorse	Non-liquid storage	1	_	1 hr	0
Lined Dumpsters	All operating areas, Deadhorse	Non-liquid storage	1	2 to install liner	0.5 hr	0.5 hr
RCRA Storage Container	GPB, MPU, KRU, Endicott, Deadhorse	Non-liquid hazardous material disposal	1	_	0.5 hr	0.5 hr
Dump Truck	GPB, KRU	Waste transport	1	1	1 hr	0
Physical-Chemical Package Plants	Deadhorse	Wastewater treatment	1	3	1 hr	1 hr
Extended Aeration Package Plants	Deadhorse	Wastewater treatment	1	3	1 hr	1 hr
Rotating Biological Package Plants	Deadhorse	Wastewater treatment	1	3	1 hr	1 hr

SUPPORT

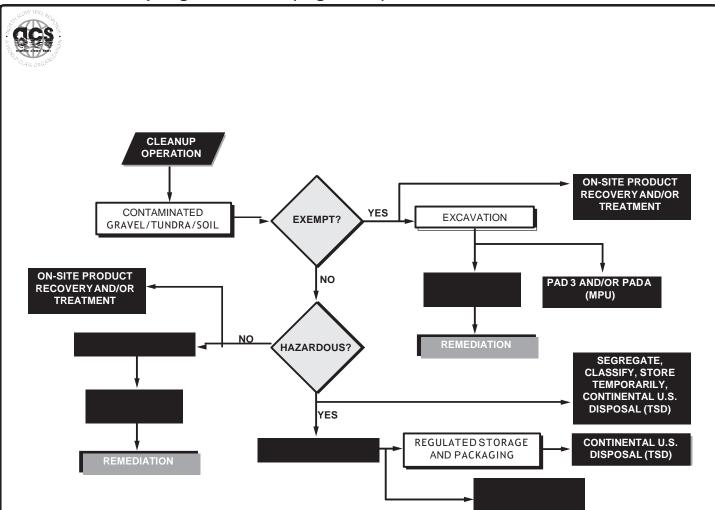
Decisions about waste management are made by the asset environmental staff and, in a major incident, the Environment or Waste Management Unit Leader.

Front-end loaders and end dumps transport non-oily solid waste. Water trucks and vacuum trucks transport liquid waste. The North Slope Borough Landfill, North Slope Borough Wastewater Treatment Plant and the North Slope Borough Incinerator are final disposal sites for non-hazardous, non-oily waste. A helicopter transports the portable incinerator to the remote site. Plastic totes and drums assist transport of waste to a dumpster or an on-site incinerator.

ASSET CONTACTS FOR WASTE MANAGEMENT

LOCATION	CONTACT	PHONE	MOBILE / PAGER
Alyeska PS-1	Field Environmental Coordinator	907-659-1085 / 907-787-4185	
Alpine	Environmental Coordinator	907-670- 4200	Pager 907-670- 4930 x6718
Kuparuk River Unit	Field Environmental Coordinator	907-659-7212 / 7242	Pager 907-659-7000, x669
Badami	Environmental Specialist	907-659-1350	
Eni Nikaitchuq	Environmental Coordinator	907-685-1457	
Eni Oooguruk	Environmental Coordinator	907-670-6625	
ExxonMobil Point Thomson	Field Environmental Specialist	907-685-3559	
Endicott	Environmental Specialist	907-659-6810	
Northstar	Environmental Specialist	907-670-3508	
Milne Point Unit	Environmental Specialist	907-670-3382	
GPB Area	Environmental Specialist (Power & Gas)	907-659-5893	Harmony 2332
GPB Area	Environmental Specialist (East)	907-659-5999	Harmony 2328
GPB Area	Environmental Specialist (West)	907-659-4789	Harmony 2329
GPB Area	Waste Coordinators	907-659-4810	
GPB Area	Waste Technicians	907-659-4705	

CAPACITIES FOR PLANNING


The average end dump on the North Slope holds 20 cubic yards and travels at 35 mph.

TECHNICAL CONSIDERATIONS

- Each disposal/recycling facility has operational and legal restrictions that affect what can be accepted:
 - Physical limitations (particle size, solids content, offloading rate, capacity)
- Safety considerations (flash point, pH)
- Permit/regulatory restrictions (waste classification, storage requirements)
- Ballot agreements or other legal stipulations (may exclude certain users)
- Operating procedures (site-specific paperwork and training requirements)
- Facility personnel have authority to reject any material that does not meet their operational and safety criteria.

ENVIRONMENTAL CONSIDERATIONS

- These guidelines apply to all recovery, storage, transfer, and disposal operations.
 - Maintain communications with Environment Unit staff who determine waste management.
- Make sure all necessary permits and approvals are in place for storage, transportation, and disposal, and that stipulations are understood by response personnel.
- Manage recovery and storage operations as necessary to contain secondary spills, minimize contact with precipitation and runoff, and protect uncontaminated areas.
- Segregate wastes of different types to the extent possible.
- Do not discharge any wastes to land, tundra, or water without explicit approval.

Contaminated gravel is excavated and stockpiled for processing, or left in place for treatment, with agency approval. Supplemental storage areas are constructed and maintained in accordance with applicable permits, approvals, and regulations. Containment areas are constructed from synthetic pit liner and timbers (see Tactic D-2). The following table lists existing storage areas for contaminated gravel. Pre-approval from the asset environmental staff is required.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

CONTAMINATED GRAVEL STORAGE AREAS

LOCATION	FACILITY	GRAVEL STORAGE CAPACITY (CU. YDS)		
Kuparuk River Unit	DS 1-H	12,230		
	CPF-1 (Class 2), lined pit	3,800		
Greater Prudhoe Bay Area	Pad 3, West Pit	1,500 (lightly contaminated gravel)		
	CC2-A, lined pit	2,280 yd³ max.		
	W Pad, lined pit	1,230 yd³ max.		
	Santa Fe Pad (bins)	3 each; total storage = 15		
Milne Point Unit	D-Pad	Variable; temporary pits built as needed; contact MPU Environmental Technician		
Endicott	MPI storage pits	356		
	Storage bins (2 bins)	18 each; total storage = 36		
Badami	Badami ball mill temporary storage pit	1,282		
	Storage bins (6 bins)	18.5 each; total storage = 111. More storage can be constructed if needed.		
Alpine	Lined storage area	2 each; total storage = 400		
Northstar	Spot cleaning bins	6 each; total storage = 12		
Alyeska PS-1	Temporary stockpiles	100,000		

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Front-End Loader and/or Bobcat	Loader: All Bobcat: ACS, PBE, KRU	Gravel transport	1	1	1 hr	0.5 hr
Shovel	All	Gravel transport	<u>≥</u> 1	1	0.5 hr	0
D-8 Bulldozer	GPB, KRU, Peak	Gravel removal	1	1	1 hr	0.5 hr
Dump Truck	GPB, KRU	Waste transport	1	1	1 hr	0
Pit Liner (varying sizes)	All	Storage liner	1	Size-dependent	1 hr	1 hr
Timbers	All	Non-liquid storage	Variable	2 for setup	1 hr	1 hr

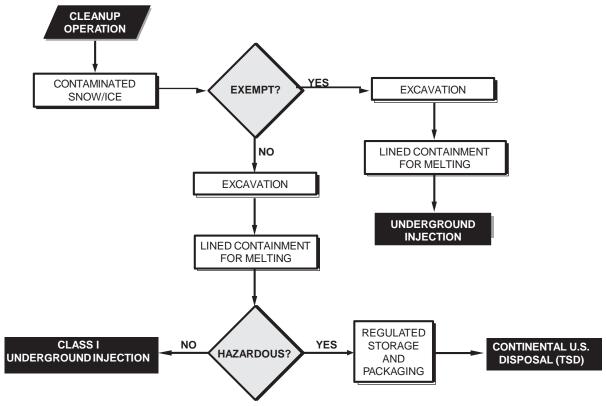
SUPPORT

Decisions about waste management are made by the asset environmental staff and, in a major incident, the Environmental or Waste Management Unit Leader.

ASSET CONTACTS FOR WASTE MANAGEMENT

LOCATION	CONTACT	PHONE	MOBILE / PAGER
Alyeska PS-1	Field Environmental Coordinator	907-659-1085 / 907-787-4185	
Alpine	Environmental Coordinator	907-670- 4200	Pager 907-670- 4930 x6718
Kuparuk River Unit	Field Environmental Coordinator	907-659-7212 / 7242	Pager 907-659-7000, x669
Badami	Environmental Specialist	907-659-1350	
Eni Nikaitchuq	Environmental Coordinator	907-685-1457	
Eni Oooguruk	Environmental Coordinator	907-670-6625	
ExxonMobil Point Thomson	Field Environmental Specialist	907-685-3559	
Endicott	Environmental Specialist	907-659-6810	
Northstar	Environmental Specialist	907-670-3508	
Milne Point Unit	Environmental Specialist	907-670-3382	
GPB Area	Environmental Specialist (Power & Gas)	907-659-5893	Harmony 2332
GPB Area	Environmental Specialist (East)	907-659-5999	Harmony 2328
GPB Area	Environmental Specialist (West)	907-659-4789	Harmony 2329
GPB Area	Waste Coordinators	907-659-4810	
GPB Area	Waste Technicians	907-659-4705	

Contaminated gravel is moved at the response site by shovels, Bobcats, loaders and dozers. Front-end loaders and end dumps transport gravel to designated storage or treatment areas. Contaminated gravel at remote sites may be staged in lined areas until freeze-up, when tundra travel is permitted, then hauled overland by Rolligon or ice road. Contaminated gravel that has frozen will have to be broken up with a trimmer or by other means. This process is likely to tear up the pit liner also, and laborers will have to separate the liner fragments from the gravel. Barge support may be used for contaminated shoreline response.


TECHNICAL CONSIDERATIONS

- Each disposal/recycling facility has operational and legal restrictions that affect what can be accepted:
 - Physical limitations (particle size, solids content, offloading rate, capacity)
 - Safety considerations (flash point, pH)
 - Permit/regulatory restrictions (waste classification, storage requirements)
 - Ballot agreements or other legal stipulations (may exclude certain users)
 - Operating procedures (site-specific paperwork and training requirements)
- Facility personnel have authority to reject any material that does not meet their operational and safety criteria.

ENVIRONMENTAL CONSIDERATIONS

- These guidelines apply to all recovery, storage, transfer, and disposal operations.
- Maintain communications with Environment Unit staff who determine waste management.
- Make sure all necessary permits and approvals are in place for storage, transportation, and disposal, and that stipulations are understood by response personnel.
- Manage recovery and storage operations as necessary to contain secondary spills, minimize contact with precipitation and runoff, and protect uncontaminated areas.
- Segregate wastes of different types to the extent possible.
- Do not discharge any wastes to land, tundra, or water without explicit approval.

Temporar y storage and stockpile areas are constructed and managed in accordance with applicable regulations, permits, and approvals. With asset approval, contaminated snow and ice may be brought to existing solid waste storage areas (see tactic on contaminated gravel).

Contaminated snow or ice is collected in bulk containers, or stockpiled in designated storage areas as directed by asset environmental personnel.

Contaminated snow generally has the same classification as the spilled material (reusable product, exempt, non-exempt, non-hazardous, or hazardous), and is managed accordingly.

Snow and ice are either allowed to thaw naturally or are processed in a snow melter. In either case, the snow is subsequently managed as a liquid. (See tactic on processing of recovered liquids).

INTERIM STORAGE SITES FOR OIL-CONTAMINATED SNOW AND ICE

LOCATION	FACILITY	DISTANCE FROM PM-2 AT WEST DOCK	STORAGE CAPACITY					
West Dock Staging Area	West Dock	2.3 miles	Approx. 30 acres					
Put 23 Mine Site Staging Area	South Put River boatlaunch	8.1 miles	Approx. 200 acres					
OSP Staging Area	North of FS 1	9.9 miles	Approx. 25 acres					
DS-4, G&I Pits /Material Transfer Site (MTS) #1	G&I	14 miles	4,000 yd³ (MTS #1)					
Alpine	CD-1 and CD-2	_	Approx. 2 acres					

SUPPORT

Decisions about waste management are made by the asset environmental staff and, in a major incident, the Environmental or Waste Management Unit Leader.

Processing of Contaminated Snow/Ice (Page 2 of 2) TACTIC D-5

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

• Assume that snow melters operate 10 hr in 12-hr shift; 2 shifts per day.

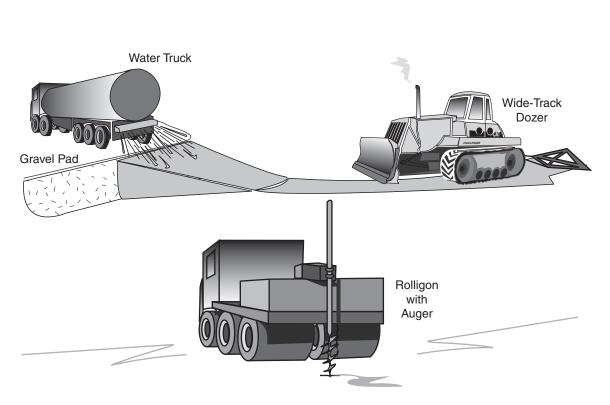
EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Snow Melter	PBE	Snow melting	1	3	2 hr	2 hr

CAPACITIES FOR PLANNING

TYPICAL LIQUID PROCESSING CAPACITY
• 30 cu. yd/hr of lightly oiled snow and 30 bbl/hr of resultingliquids
• 30 cu. yd/hr of heavily oiled snow and 70 bbl/hr of resulting oil

ASSET CONTACTS FOR WASTE MANAGEMENT

LOCATION	CONTACT	PHONE	MOBILE / PAGER
Alyeska PS-1	Field Environmental Coordinator	907-659-1085 / 907-787-4185	
Alpine	Environmental Coordinator	907-670- 4200	Pager 907-670- 4930 x6718
Kuparuk River Unit	Field Environmental Coordinator	907-659-7212 / 7242	Pager 907-659-7000, x669
Badami	Environmental Specialist	907-659-1350	
Eni Nikaitchuq	Environmental Coordinator	907-685-1457	
Eni Oooguruk	Environmental Coordinator	907-670-6625	
ExxonMobil Point Thomson	Field Environmental Specialist	907-685-3559	
Endicott	Environmental Specialist	907-659-6810	
Northstar	Environmental Specialist	907-670-3508	
Milne Point Unit	Environmental Specialist	907-670-3382	
GPB Area	Environmental Specialist (Power & Gas)	907-659-5893	Harmony 2332
GPB Area	Environmental Specialist (East)	907-659-5999	Harmony 2328
GPB Area	Environmental Specialist (West)	907-659-4789	Harmony 2329
GPB Area	Waste Coordinators	907-659-4810	
GPB Area	Waste Technicians	907-659-4705	


TECHNICAL CONSIDERATIONS

- Each disposal/recycling facility has operational and legal restrictions that affect what can be accepted:
 - Physical limitations (particle size, solids content, offloading rate, capacity)
 - Safety considerations (flash point, pH)
 - Permit/regulatory restrictions (waste classification, storage requirements)
 - Ballot agreements or other legal stipulations (may exclude certain users)
- Operating procedures (site-specific paperwork and training requirements).
- · Facility personnel have authority to reject any material that does not meet their operational and safety criteria.

ENVIRONMENTAL CONSIDERATIONS

- These guidelines apply to all recovery, storage, transfer, and disposal operations.
 - Maintain communications with ICS Environment Unit staff who determine waste management.
 - Make sure all necessary permits and approvals are in place for storage, transportation, and disposal, and that stipulations are understood by response personnel.
 - Manage recovery and storage operations as necessary to contain secondary spills, minimize contact with precipitation and runoff, and protect uncontaminated areas.
 - Segregate wastes of different types to the extent possible.
 - Do not discharge any wastes to land, tundra, or water without explicit approval.

An ice road is built by spraying water from a water truck onto the surface of a lake, the tundra, or the sea. The water is allowed to freeze in place, while layers are continually added. Thickness of the ice road depends on equipment that will be traveling over it and on the terrain. The water truck tank is insulated to keep the water from freezing, and truck exhaust is normally routed through the box containing the pump to keep the pump from freezing. An ice ramp is constructed to gain access off the pad or road, and requires a greater thickness than the road itself. An alternate source of water is accessed by drilling holes into the sea ice or a lake.

Methods of building ice roads include the following:

- Water trucks in conjunction with either a loader pulling a drag, a wide-track dozer pulling a drag, or a grader smoothing out the surface. All of these combine lifts of snow with the water
- · Flooding can also be accomplished with small portable pumps or pick-up mounted pumps.
- Rolligons may be used on sea ice for flooding purposes.

Ice Road Construction for Access to Winter Tundra Spill (Page 2 of 2) TACTIC L-1

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

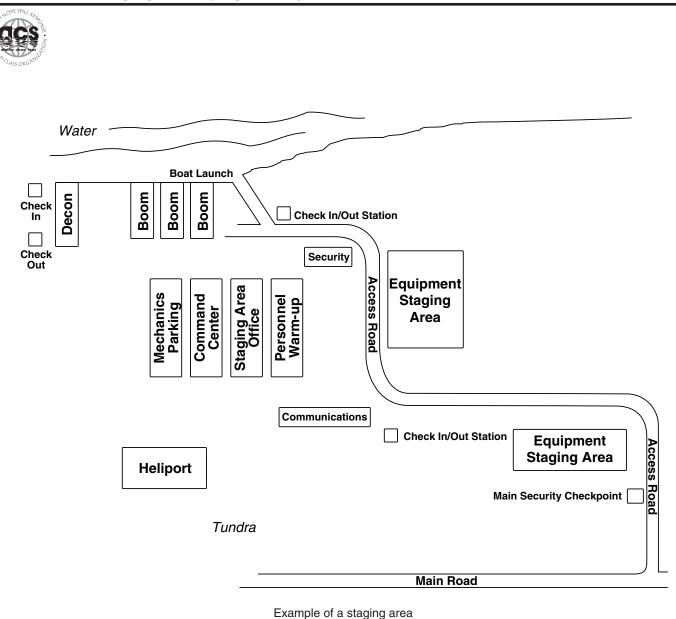
EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Water Truck	All	Ice road construction	<u>≥</u> 2	<u>≥</u> 2	2 hr	0.5 hr
or	Wide-Track Dozer with Drag	All	Ice road construction	1 (3 are available on the Slope)	1	1 hr	0.5 hr
ا '	Rolligon with Auger	Peak, AIC	Ice road construction	6	6	6 hr	2 hr
	Rotary Trimmer	KRU, GPB	Ice mining and ice road thickening	1	1	1 hr	0.5 hr
	Grader	Grader All		1	1	2 hr	0.5 hr
	Dump Truck	KRU, GPB, Peak, AIC, Alpine	Work with roto trimmer	<u>></u> 2	<u>></u> 2	1 hr	0.5 hr
	Front-End Loader	All	Load dump truck	1	1	1 hr	0.5 hr

TOTAL STAFF

>7

SUPPORT


EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Semi and Trailer	GPB, KRU, Alpine	Transport Wide-Track Dozer	1	1 driver	1 hr	0
Hose	All	Spraying water	1	1	1 hr	0
Pump	All	Transferring water	≥1	1	1 hr	1 hr
Light Plant	All	Illumination	≥1	2 for initial setup, and 1 to check and fuel occasionally.	1 hr	0.5 hr
Fuel Truck	All	Fuel heavy equipment	1	Once per shift	1 hr	0.5 hr
Lube Truck	All, except Badami	Provide fluids to heavy equipment	1	Once per shift	1 hr	0.5 hr
Mechanic Truck	All, except Badami	Support equipment	1	1	1 hr	0.5 hr

CAPACITIES FOR PLANNING

- Ice road construction around the largest tank spill on the Slope would use two 12-hr shifts, while ice ramp construction would use three 12-hr shifts, for usable ice road.
- One lift = 6 inches of ice on ice road (4 inches on sea ice).
- · One lift is made in one 12-hr shift.
- It takes 48 hr to build a serviceable ice road with fresh water and air temperatures less than 0°F.
- Distance of 6-inch-lift a water truck can lay: ≤1,760 ft in 12 hr (for 1 water truck and 1 loader with drag).
- Distance of 4-inch-lift a Rolligon can lay: ≤3,000 ft in 12 hr.

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- When working with equipment around or near flowlines, add a spotter to each front-end loader and wide-track
 dozer.
- Ice road construction around the spill allows heavy equipment, including end dumps, to access the spill, and protects the underlying tundra.
- An ice road provides containment of any oil melting out during breakup.
- Ice-road construction rates are temperature-dependent.
- A water withdrawal permit may be needed.

A staging area is a location where personnel and equipment are temporarily placed for tactical deployment during an oil spill response. The staging area provides a system for receiving, tracking and documenting all personnel, equipment, and supplies coming into and out of the staging area from North Slope and out-of-region locations.

The staging area provides a security checkpoint, a field command post, portable toilets, break room, decontamination, communications, and a safety officer. The staging area may also include a heliport and wildlife trailer.

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Staging Area Manager's Office	GPB, KRU	Office duties	1	4 for setup	1 hr	0.5 hr
SRT Command Center	ACS, GPB, KRU	1	_	1 hr	0.5 hr	
Generator	All	Power	2	_	1 hr	0.5 hr
Loader	All	Misc. support	2	2	1 hr	0.5 hr
Skid-Steer Loader	All	Staging area organization	1	1	1 hr	0.5 hr
Semi and Trailer	All	Transfer of equipment and supplies	1	1 driver	1 hr	0.5 hr
Pickup Truck	All	Expediting & misc. support	6	6	0.5 hr	0.5 hr
Envirovac	ACS, GPB	Restroom facility	1	_	1 hr	1 hr
Communications Center	ACS	Communications	1	2 for setup	1 hr	1 hr
Portable Shelter	All	Staging area shelter/working area	2	_	1 hr	1 hr
Port-a-Potty*	ACS, GPB, KRU	Restroom facility	2	_	1 hr	0.5 hr
Breakroom	ACS, GPB, KRU	Staff needs	1		1 hr	1 hr
Wet or Dry Decon Unit	ACS, GPB, KRU	Decontamination	1	See Tactic S-6	1 hr	1 hr
Mechanic Support	All	Support equipment	1	1	1 hr	0.5 hr

TOTAL STAFF FOR OFFSHORE STAGING AREA 24 TOTAL STAFF FOR ONSHORE STAGING AREA 20

• Additional personnel may be required: Staging Area Manager, Documentation Coordinator, Communications Coordinator, and Resource Coordinator.

OPTIONAL EQUIPMENT AND PERSONNEL

EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
Heliport	GPB, KRU,	Helicopter support	1	2 for setup	1 hr	1 hr
Light Plant	All	Illumination	≥1	2 for inital setup, and 1 to check and fuel occasionally	1 hr	0.5 hr
Wildlife Trailer	PBE, KRU	Wildlife support	1	2	1 hr	1 hr
Portable Heater	All	Heat	≥1	1 for intial setup	1 hr	0.5 hr
Freighter Air Boat	ACS	Equipment and personnel transport	2	8	1 hr	0

- Additional personnel may be required: Beach Master, Heliport Manager, and Check In / Check Out Coordinator.
- Mobimat material may be used on mud flats to create a work platform.

^{*1} portable toilet for every 10 people

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- Several existing gravel pads across the North Slope may be available as staging areas for major cleanup operations. Permission may be obtained from ConocoPhillips, HAK/Other Member Companies, their contractors and/or others for use of the gravel pad space.
- For remote areas more than 1 mile off the road/pad system, rolligons may be utilized for transport and as work platforms.
- Approval from the Operations Section Chief is required for any vehicle tundra travel (off-road or off-pad), which must be in accordance with ACS' emergency tundra travel permit (See Tactic A-3). Any excavations in tundra or any tundra damage must be reported to the Operations Section Chief. All on-tundra activity must be documented and reported to the Planning Section for reporting to ensure permit compliance. Avoid archeological sites and biologically sensitive habitats. Travel across tundra with tracked vehicles, heavy equipment, and even foot traffic can seriously damage the vegetative mat, induce thermokarst, and cause structure disturbance. Using sheets of plywood as a traveling surface and minimizing trips with equipment greatly reduce disturbance of the tundra.

CHECKLIST FOR STAGING AREAS

Purposes for Staging Areas:

- Location where incident personnel and equipment are available for tactical deployment
- Can serve as a check-in location for equipment and personnel reporting to the incident

Guidelines for Staging Areas:

- Designated by Operations Section Chief
- Qualified staging area manager assigned to each staging area
- Resources in staging area must be ready for assignment within time specified by Operations Section Chief
- Should be in easily accessible locations within reasonable distance of incident site

• Logistical Needs for Staging Areas:

- Open area for maneuverability of equipment
- Electric power, phone and fax service
- Radio communication with Operations Section Chief and ICP Communications Center
- Office trailer or building on site or nearby
- Supplies and consumables for personnel and equipment (food, fuel, water, sanitation)
- Medical plan and appropriate emergency medical supplies for personnel
- Security needs, depending upon location and other available security control

• Number and Type of Resources Assembled at a Staging Area:

- Determined by Operations Section Chief based on what is considered an appropriate reserve to meet expected contingencies
- Can change based on existing or changing operational or other conditions
- Must be evaluated based on comparison of cost and operational benefits of maintaining equipment at staging area versus at more central warehousing facility
- May depend upon main purpose of staging area (i.e., whether to serve as resource pool for available equipment or as check-in area for incoming resources)

• Staging Area Manager Should be Assigned Whenever a Staging Area is Established, Especially When:

- Staging area becomes "permanent" for duration of incident response
- Staging area is large, with numerous equipment items assigned

• Staging Area Manager's Duties Include:

- Obtain a briefing from Operations Section Chief
- Proceed to staging area and establish staging area layout
- Determine support needs for equipment, feeding, sanitation and security
- Establish check-in process as appropriate, including communications to ICP
- Post areas for identification and traffic control
- Request maintenance service for equipment at staging area as appropriate
- Respond to requests for resource assignments
- Obtain and issue receipts for supplies distributed and received
- Report resource status changes as required
- Maintain staging area in an orderly condition
- Demobilize staging area in accordance with incident demobilization plan
- Maintain Unit Log

The transport of equipment and personnel to a spill site will be primarily by vehicle or vessel. Rotary- and fixed-wing aircraft may also be used depending on the circumstances of the spill. The following tables provide travel times for the various modes of transport. The individual tactics in this manual provide the times to mobilize equipment so that it is ready for transport and the times deploy specific pieces of equipment once they arrive on scene.

TABLE 1
TRAVEL TIME FOR LIGHT-TRANSPORT FIXED-WING AIRCRAFT
AT A PLANNING SPEED OF 150 MPH (HOURS)

	Anchorage	Badami	Barrow	Barter Island	Bullen Point	Deadhorse/Prudhoe Bay	Fairbanks	Kenai	Kuparuk	Nuiqsut/Alpine	Point Hope	Point Lay	Pt. Thomson	Seattle	Umiat	Valdez	Wainwright
Anchorage		4.3	4.8	4.3	4.5	4.3	1.9	0.5	4.3	4.4	4.6	4.6	4.4	9.7	3.8	0.8	4.7
Badami	4.3		1.6	0.6	0.0	0.2	2.4	5.0	0.4	0.6	3.4	2.6	0.1	14.0	0.9	4.2	2.1
Barrow	4.8	1.6		2.1	1.6	1.3	3.5	5.1	1.3	1.1	2.1	1.2	1.7	14.5	1.1	5.3	0.6
Barter Island	4.3	0.6	2.1		0.6	8.0	2.7	5.6	1.0	1.2	3.9	3.1	0.3	14.0	1.4	4.3	2.6
Bullen Point	4.5	0.0	1.6	0.6		0.2	2.4	5.0	0.4	0.7	3.4	2.6	0.1	14.2	0.9	4.6	2.1
Deadhorse/Prudhoe Bay	4.3	0.2	1.3	0.8	0.2		2.7	4.8	0.2	0.4	3.1	2.3	0.3	14.0	0.7	4.3	1.8
Fairbanks	1.9	2.4	3.5	2.7	2.4	2.7		2.4	2.8	2.8	3.8	3.5	2.4	9.9	2.2	1.6	3.4
Kenai	0.5	5.0	5.1	5.6	5.0	4.8	2.4		5.0	5.2	4.7	4.8	5.0	9.6	4.1	1.2	4.9
Kuparuk	4.3	0.4	1.3	1.0	0.4	0.2	2.8	5.0		0.2	3.0	2.2	0.5	14.1	0.6	4.5	1.6
Nuiqsut/Alpine	4.4	0.6	1.1	1.2	0.7	0.4	2.8	5.2	0.2		2.8	1.9	0.6	14.4	0.5	4.5	1.4
Point Hope	4.6	3.4	2.1	3.9	3.4	3.1	3.8	4.7	3.0	2.8		0.9	3.5	14.0	2.5	5.2	1.5
Point Lay	4.6	2.6	1.2	3.1	2.6	2.3	3.5	4.8	2.2	1.9	0.9		2.7	13.7	1.8	5.1	0.6
Pt. Thomson	4.4	0.1	1.7	0.3	0.1	0.3	2.4	5.0	0.5	0.6	3.5	2.7		14.0	1.0	4.2	2.2
Seattle	9.7	14.0	14.5	14.0	14.2	14.0	9.9	9.6	14.1	14.4	14.0	13.7	14.0		12.1	8.9	13.5
Umiat	3.8	0.9	1.1	1.4	0.9	0.7	2.2	4.1	0.6	0.5	2.5	1.8	1.0	12.1		4.0	1.4
Valdez	0.8	4.2	5.3	4.3	4.6	4.3	1.6	1.2	4.5	4.5	5.2	5.1	4.2	8.9	4.0		5.1
Wainwright	4.7	2.1	0.6	2.6	2.1	1.8	3.4	4.9	1.6	1.4	1.5	0.6	2.2	13.5	1.4	5.1	

Transit time may be greater during winter whiteouts, break-up, foggy conditions, or other adverse weather.

Dimensions of Major North Slope Airstrips:

•	Alpine	5,000 ft x 100 ft
•	Badami	5,100 ft x 85 ft
•	Barrow	6,500 ft x 150 ft
•	Barter Island	4,800 ft x 100 ft
•	Bullen Point	3,500 ft x 70 ft
•	CD-3 (Alpine)	3,000 ft x 75 ft
•	Deadhorse	6,500 ft x 150 ft
•	Kuparuk	6,000 ft x 130 ft
•	Nuiqsut	4,343 ft x 90 ft
•	Point Hope	4,000 ft x 75 ft
•	Point Lay	3,519 ft x 80 ft
•	Point Thomson	5,000 ft x 150 ft
•	Umiat	5,400 ft x 75 ft
•	Wainwright	4,494 ft x 90 ft

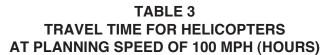


TABLE 2 TRAVEL TIME FOR HEAVY TRANSPORT FIXED-WING AIRCRAFT AT PLANNING SPEED OF 300 MPH (HOURS)

	Anchorage	Badami	Barrow	Barter Island	Bullen Point	Deadhorse/Prudhoe Bay	Fairbanks	Kenai	Kuparuk	Nuiqsut/Alpine	Point Hope	Point Lay	Pt. Thomson	Seattle	Umiat	Valdez	Wainwright
Anchorage		2.2	2.4	2.1	2.3	2.1	0.9	0.3	2.2	2.2	2.3	2.3	2.2	4.8	1.9	0.4	2.4
Badami	2.2		0.8	0.3	0.0	0.1	1.2	2.5	0.2	0.3	1.7	1.3	0.1	7.0	0.5	2.1	1.0
Barrow	2.4	0.8		1.1	8.0	0.7	1.7	2.5	0.7	0.5	1.1	0.6	0.8	7.2	0.6	2.7	0.3
Barter Island	2.1	0.3	1.1		0.3	0.4	1.3	2.8	0.5	0.6	2.0	1.6	0.2	7.0	0.7	2.1	1.3
Bullen Point	2.3	0.0	0.8	0.3		0.1	1.2	2.5	0.2	0.3	1.7	1.3	0.1	7.1	0.5	2.3	1.0
Deadhorse/Prudhoe Bay	2.1	0.1	0.7	0.4	0.1		1.3	2.4	0.1	0.2	1.6	1.2	0.2	7.0	0.4	2.2	0.9
Fairbanks	0.9	1.2	1.7	1.3	1.2	1.3		1.2	1.4	1.4	1.9	1.8	1.2	4.9	1.1	0.8	1.7
Kenai	0.3	2.5	2.5	2.8	2.5	2.4	1.2		2.5	2.6	2.4	2.4	2.5	4.8	2.0	0.6	2.5
Kuparuk	2.2	0.2	0.7	0.5	0.2	0.1	1.4	2.5		0.1	1.5	1.1	0.3	7.0	0.3	2.3	0.8
Nuiqsut/Alpine	2.2	0.3	0.5	0.6	0.3	0.2	1.4	2.6	0.1		1.4	1.0	0.4	7.2	0.2	2.3	0.7
Point Hope	2.3	1.7	1.1	2.0	1.7	1.6	1.9	2.4	1.5	1.4		0.5	1.8	7.0	1.3	2.6	0.8
Point Lay	2.3	1.3	0.6	1.6	1.3	1.2	1.8	2.4	1.1	1.0	0.5		1.4	6.9	0.9	2.5	0.3
Pt. Thomson	2.2	0.1	0.8	0.2	0.1	0.2	1.2	2.5	0.3	0.4	1.8	1.4		7.0	0.5	2.1	1.1
Seattle	4.8	7.0	7.2	7.0	7.1	7.0	4.9	4.8	7.0	7.2	7.0	6.9	7.0		6.1	4.4	6.7
Umiat	1.9	0.5	0.6	0.7	0.5	0.4	1.1	2.0	0.3	0.2	1.3	0.9	0.5	6.1		2.0	0.7
Valdez	0.4	2.1	2.7	2.1	2.3	2.2	0.8	0.6	2.3	2.3	2.6	2.5	2.1	4.4	2.0		2.5
Wainwright	2.4	1.0	0.3	1.3	1.0	0.9	1.7	2.5	0.8	0.7	0.8	0.3	1.1	6.7	0.7	2.5	

Transit time may be greater during winter whiteouts, break-up, foggy conditions, or other adverse weather.


	1													`										
	Anchorage	Badami	Barrow	Barter Island	Bullen Point	Deadhorse	Endicott Main Production Island	Fairbanks	Kenai	Kuparuk Central Production Facilities #1	Kuparuk River Staging Area West	Liberty Production Island	Milne Point Central Faclities Pad	Northstar Production Island	Nuiqsut/Alpine	Oliktok Point	Oooguruk Production Island	Point Hope	Point Lay	Pt. Thomson (Pad)	Pump Station #4	Umiat	Wainwright	West Dock
Anchorage		6.6	7.2	6.4	6.8	6.4	6.5	2.8	0.8	6.5	6.5	6.6	6.6	6.6	6.6	6.8	6.5	7.0	6.7	6.9	5.0	5.7	7.1	6.5
Badami	6.6	0.4	2.4	0.9	0.1	0.3	0.2	3.6	7.5	0.6	0.5	0.1	0.6	0.4	1.0	0.6	0.8	5.1	3.4	0.3	1.4	1.4	3.1	0.3
Barrow	7.2	2.4	2.0	3.2	0.9	2.0	2.1	5.2	7.6	2.0	2.1	2.2	1.8	2.0	1.6	1.7	1.6	3.2	1.8	2.7	2.5	1.7	0.9	2.0
Barter Island	6.4	0.9	3.2	0.0	0.9	1.2	1.1	4.0	8.4	1.5	1.4	1.0	1.4	1.3	1.9	1.5	1.6	5.9	4.7	0.6	1.9	2.2	3.9	1.2
Bullen Point Deadhorse	6.8	0.1	2.0	0.9	0.4	0.4	0.3	3.7 4.0	7.6	0.7	0.5	0.2	0.6	0.4	1.0 0.7	0.7	0.8	5.1 4.7	3.9	0.2	1.5	1.4	3.1 2.7	0.4
Endicott	0.4	0.3	2.0	1.2	0.4		0.1	4.0	7.2	0.3		0.2	0.2	0.2	0.7	0.4	0.5	4.7	3.5	0.6	1.4	1.1	2.7	0.1
Main Production Island	6.5	0.2	2.1	1.1	0.3	0.1	4.4	4.1	7.3	0.4	0.2	0.1	0.3	0.2	0.7	0.4	0.5	4.8	3.6	0.4	1.5	1.2	2.8	0.1
Fairbanks	2.8	3.6	5.2	4.0	3.7	4.0	4.1	0.0	3.6	4.3	4.2	4.2	4.3	4.2	4.3	4.4	4.0	5.7	5.3	3.9	2.6	3.4	5.1	4.1
Kenai Kuparuk Central	6.5	7.5	7.6	1.5	7.6	0.3	7.3	3.6 4.3	7.5	7.5	7.4 0.2	7.4 0.5	7.6	7.4 0.2	7.9	7.5	0.2	7.1	3.2	7.8	5.8 1.5	0.9	2.4	7.3
Production Facilities #1 Kuparuk River Staging Area West	6.5	0.5	2.1	1.4	0.5	0.2	0.2	4.2	7.4	0.2	0.2	0.4	0.1	0.1	0.5	0.2	0.3	4.6	3.4	0.8	1.4	1.0	2.6	0.1
Liberty Production Island	6.6	0.1	2.2	1.0	0.2	0.2	0.1	4.2	7.4	0.5	0.4		0.4	0.3	0.8	0.5	0.6	4.9	3.7	0.3	1.6	1.2	2.9	0.2
Milne Point Central Facilities Pad	6.6	0.6	1.8	1.4	0.6	0.2	0.3	4.3	7.6	0.1	0.1	0.4	0.4	0.2	0.4	0.1	0.2	4.5	3.2	0.9	1.5	1.0	2.4	0.2
Northstar Production Island	6.6	0.4	2.0	1.3	0.4	0.2	0.2	4.2	7.4	0.2	0.1	0.3	0.2		0.5	0.3	0.4	4.6	3.4	0.7	1.6	1.1	2.6	0.1
Nuiqsut/Alpine	6.6	1.0	1.6	1.9	1.0	0.7	0.7	4.3	7.9	0.4	0.5	0.8	0.4	0.5		0.3	0.3	4.1	2.9	1.3	1.6	0.4	2.1	0.6
Oliktok Point	6.8	0.6	1.7	1.5	0.7	0.4	0.4	4.4	7.5	0.1	0.2	0.5	0.1	0.3	0.3		0.1	4.4	3.2	0.9	1.6	1.0	2.4	0.3
Oooguruk Production Island	6.5	0.8	1.6	1.6	0.8	0.5	0.5	4.0	6.9	0.2	0.3	0.6	0.2	0.4	0.3	0.1		4.3	3.1	0.8	1.5	0.9	2.9	0.4
Point Hope	7.0	5.1	3.2	5.9	5.1	4.7	4.8	5.7	7.1	4.4	4.6	4.9	4.5	4.6	4.1	4.4	4.3		1.4	5.3	4.4	3.8	2.3	4.7
Point Lay	6.7	3.4	1.8	4.7	3.9	3.5	3.6	5.3	7.2	3.2	3.4	3.7	3.2	3.4	2.9	3.2	3.1	1.4		4.1	3.5	2.7	0.9	3.4
Pt. Thomson (Pad)	6.9	0.3	2.7	0.6	0.2	0.6	0.4	3.9	7.8	0.9	0.8	0.3	0.9	0.7	1.3	0.9	0.8	5.3	4.1		1.7	1.5	3.3	0.6
Pump Station #4	5.0	1.4	2.5	1.9	1.5	1.4	1.5	2.6	5.8	1.5	1.4	1.6	1.5	1.6	1.6	1.6	1.5	4.4	3.5	1.7		1.0	3.0	1.5
Umiat	5.7	1.4	1.7					3.4	6.1	0.9	1.0	1.2	1.0	1.1	0.4	1.0	0.9	3.8	2.7	1.5	1.0		2.1	1.1
Wainwright	-	3.1	-	-	3.1		-	5.1	7.4		2.6	2.9	2.4	2.6	2.1	2.4	2.9	2.3	0.9	3.3	3.0	2.1		2.7
West Dock	6.5	0.3	2.0	1.2	0.4	0.1	0.1	4.1	7.3	0.3	0.1	0.2	0.2	0.1	0.6	0.3	0.4	4.7	3.4	0.6	1.5	1.1	2.7	

Transit time may be greater during winter whiteouts, break-up, foggy conditions, or other adverse weather.

_																										
	Point Hope	134.1	109.0	105.5	101.0	99.3	98.6	99.3	2.66	100.5	98.1	0.76	96.4	95.3	96.2	97.6	93.8	9.06	6'06	89.2	92.2	2.08	59.5	43.4	26.1	
	Point Lay	108.0	82.9	79.4	74.9	73.2	72.5	73.1	73.6	74.4	71.9	70.8	70.2	69.1	70.0	71.5	67.7	64.4	64.8	63.0	66.1	54.6	33.4	17.3		26.1
Ī	tdgirwnisW	2.06	65.6	62.0	57.6	55.9	55.2	55.8	56.3	57.1	54.6	53.5	52.9	51.8	52.7	54.2	50.4	47.1	47.4	45.7	48.8	37.3	16.1		17.3	43.4
	Barrow	74.6	49.5	46.0	41.5	39.8	39.1	39.7	40.2	41.0	38.5	37.4	36.8	35.7	36.7	38.1	34.3	31.0	31.4	29.6	30.3	21.2		16.1	33.4	59.5
<u>,</u> [Cape Simpson	53.4	28.3	24.8	20.3	18.6	17.9	18.6	19.0	19.8	17.4	16.2	15.6	14.5	15.5	16.9	13.1	9.8	10.2	8.5	9.1		21.2	37.3	54.6	80.7
	Colville River Delta	44.1	19.1	15.6	12.7	10.9	10.3	9.6	9.6	10.9	6.6	8.8	8.1	6.9	6.5	7.9	4.2	2.4	2.2	0.8		9.1	30.3	48.8	66.1	92.2
	Oooguruk Production Island	43.9	18.8	15.3	12.1	10.4	9.7	9.0	8.9	10.3	9.3	8.2	9.7	6.4	5.9	7.4	3.6	1.8	1.6		0.8	8.5	29.6	45.7	63.0	89.2
- 1	Oliktok Point	42.2	17.2	13.7	10.7	8.8	8.1	8.7	7.2	8.7	7.6	6.5	5.9	4.8	4.3	5.8	2.0	9.0		1.6	2.2	10.2	31.4	47.4	64.8	90.9
	EИI (Spy Isl Иопh)	42.1	17.1	13.6	10.7	8.9	8.2	8.9	7.3	8.7	7.5	6.4	5.8	4.8	4.4	5.8	2.0		9.0	<u>6</u>	2.4	9.8	31.0	47.1	64.4	90.6
5	Central Creek Mouth	40.4	15.4	13.1	8.9	7.2	6.9	6.9	5.8	7.1	2.8	4.7	4.3	3.3	2.6	4.0		2.0	2.0	3.6	4.2	13.1	34.3	50.4	67.7	93.8
5	Kuparuk River Launch	39.2	14.2	11.9	7.8	6.1	5.4	0.9	4.4	5.9	4.6	3.5	2.9	2.5	4.		4.0	5.8	5.8	7.4	7.9	16.9	38.1	54.2	71.5	97.6
ן נ	Kuparuk River Delta	37.8	12.8	10.5	6.3	4.6	3.9	4.5	2.9	4.5	3.2	2.1	1.5	1.0		1.4	2.6	4.4	4.3	5.9	6.5	15.5	36.7	52.7	70.0	96.2
2 7	Northstar Production Island	37.5	12.5	9.0	6.1	4.4	3.7	4.1	2.6	4.2	2.9	1.8	1.2		1.0	2.5	3.3	4.8	4.8	6.4	6.9	14.5	35.7	51.8	69.1	95.3
- 1	West Dock (STP)	36.3	11.3	7.8	4.9	3.1	2.5	3.1	1.5	3.0	1.7	9.0		1.2	1.5	2.9	4.3	5.8	5.9	7.6	8.1	15.6	36.8	52.9	70.2	96.4
	West Dock Launch 2	35.7	10.7	7.6	4.7	3.0	2.3	2.9	1.2	4.1	1.1		9.0	1.8	2.1	3.5	4.7	6.4	6.5	8.2	8.8	16.2	37.4	53.5	70.8	97.0
	Putuligayuk River Launch West	35.7	10.7	6.5	3.5	3.0	2.3	3.3	0.7	4.5		1.1	1.7	2.9	3.2	4.6	5.8	7.5	7.6	9.3	6.6	17.4	38.5	54.6	71.9	98.1
-	Deadhorse River Access	36.3	12.5	8.3	5.3	3.6	2.9	1.3	3.8		4.5	4.1	3.0	4.2	4.5	5.9	7.1	8.7	8.7	10.3	10.9	19.8	41.0	57.1	74.4	100.5
ָ 	East Dock	35.1	11.3	7.1	4.1	2.4	1.7	2.6		3.8	0.7	1.2	1.5	2.6	2.9	4.4	5.8	7.3	7.2	8.9	9.5	19.0	40.2	56.3	73.6	99.7
ן ל	Sagavanirktok River Launch	35.0	11.3	7.0	4.0	2.3	1.7		2.6	1.3	3.3	2.9	3.1	4.1	4.5	0.9	6.9	8.9	8.7	9.0	9.6	18.6	39.7	55.8	73.1	99.3
בי	Endcott Main Production Island	33.4	8.4	5.3	2.4	0.7		1.7	1.7	2.9	2.3	2.3	2.5	3.7	3.9	5.4	6.5	8.2	8.1	9.7	10.3	17.9	39.1	55.2	72.5	98.6
	Endicott SDI	32.7	7.7	4.7	1.7		0.7	2.3	2.4	3.6	3.0	3.0	3.1	4.4	4.6	6.1	7.2	8.9	8.8	10.4	10.9	18.6	39.8	55.9	73.2	99.3
5	Kadleroshilik River Delta	31.0	7.2	2.9		1.7	2.4	4.0	4.1	5.3	3.5	4.7	4.9	6.1	6.3	7.8	8.9	10.7	10.7	12.1	12.7	20.3	41.5	57.6	74.9	101.0
	imsbad	28.1	4.3		2.9	4.7	5.3	7.0	7.1	8.3	6.5	7.6	7.8	9.0	10.5	11.9	13.1	13.6	13.7	15.3	15.6	24.8	46.0	62.0	79.4	105.5
ן וְ	nosmodT Jnio9	23.8		4.3	7.2	7.7	8.4	11.3	11.3	12.5	10.7	10.7	11.3	12.5	12.8	14.2	15.4	17.1	17.2	18.8	19.1	28.3	49.5	65.6	82.9	109.0
7 .	CAN/US Border North		23.8	28.1	31.0	32.7	33.4	35.0	35.1	36.3	35.7	35.7	36.3	37.5	37.8	39.2	40.4	42.1	42.2	43.9	44.1	53.4	74.6	90.7	108.0	134.1 109.0
		CAN/US Border North	Point Thomson	Badami	Kadleroshilik River Delta	Endicott SDI	Endcott Main Production Island	Sagavanirktok River Launch	East Dock	Deadhorse River Access	Putuligayuk River Launch West	West Dock Launch 2	West Dock (STP)	Northstar Production Island	Kuparuk River Delta	Kuparuk River Launch	Central Creek Mouth	ENI (Spy Isl North)	Oliktok Point	Oooguruk Production Island	Colville River Delta	Cape Simpson	Barrow	Wainwright	Point Lay	Point Hope

	Alpine ¹	Anchorage	Badami¹	Badami Pipeline tie-in at Endicott Causeway	HAK Base Operations Camp	Deadhorse	Endicott Main Production Island	Fairbanks	Heald Pt.	Kuparuk Central Production Facilities #1	Kuparuk Central Production Facilities #2	Kuparuk River Staging Area	Milne Point Central Production Facility	Nikiski	Northstar Production Island¹	Oliktok Pt.	Oooguruk Production Island¹	PBOC	Point Thomson (Pad)¹	Pump Station #1	Valdez	West Dock
Alpine ¹		25.8	2.8	2.2	1.6	1.9	2.5	15.6	2.1	1.0	8.0	1.4	1.4	30.1	2.0	1.3	1.4	1.9	3.2	1.7	26.0	1.8
Anchorage	25.8		25.0	24.4	24.2	23.9	24.5	10.2	24.2	24.8	25.0	24.4	25.0	4.3	24.6	25.3	25.4	24.0	25.5	24.1	8.7	24.4
Badami ¹	2.8	25.0		0.6	1.2	1.0	0.8	14.7	1.0	1.9	2.0	1.4	2.0	29.2	1.4	2.3	2.4	0.9	0.5	1.1	25.1	1.2
Badami Pipeline tie-in at Endicott Causeway	2.2	24.4	0.6		0.6	0.4	0.2	14.1	0.4	1.3	1.4	0.8	1.4	28.6	0.8	1.7	1.8	0.3	1.1	0.5	24.5	0.6
HAKBase Operations Camp	1.6	24.2	1.2	0.6		0.3	0.9	14.0	0.5	0.6	8.0	0.2	0.8	28.5	0.5	1.1	1.2	0.3	1.7	0.1	24.4	0.3
Deadhorse	1.9	23.9	1.0	0.4	0.3		0.6	13.7	0.3	0.9	1.1	0.5	1.0	28.2	0.6	1.3	1.4	0.1	1.5	0.1	24.1	0.4
Endicott Main Production Island	2.5	24.5	0.8	0.2	0.9	0.6		14.3	0.7	1.5	1.7	1.1	1.6	28.8	1.2	1.9	2.0	0.5	1.3	0.7	24.7	1.0
Fairbanks	15.6	10.2	14.7	14.1	14.0	13.7	14.3		14.0	14.6	14.8	14.2	14.7	14.5	14.3	15.1	15.2	13.8	15.2	13.9	10.4	14.1
Heald Pt.	2.1	24.2	1.0	0.4	0.5	0.3	0.7	14.0		1.2	1.3	0.7	1.3	28.5	0.7	1.6	1.7	0.2	1.5	0.4	24.4	0.5
Kuparuk Central Production Facilities #1	1.0	24.8	1.9	1.3	0.6	0.9	1.5	14.6	1.2		0.2	0.4	0.4	29.1	1.0	0.5	0.6	1.0	2.4	0.7	25.0	0.8
Kuparuk Central Production Facilities #2	8.0	25.0	2.0	1.4	0.8	1.1	1.7	14.8	1.3	0.2		0.6	0.6	29.3	1.2	0.5	0.6	1.1	2.5	0.9	25.2	1.0
Kuparuk River Staging Area	1.4	24.4	1.4	0.8	0.2	0.5	1.1	14.2	0.7	0.4	0.6		0.6	28.7	0.6	0.9	1.0	0.5	1.9	0.3	24.6	0.4
Milne Point Central Production Facility	1.4	25.0	2.0	1.4	0.8	1.0	1.6	14.7	1.3	0.4	0.6	0.6		29.3	1.1	0.9	1.0	1.1	2.5	0.9	25.1	0.9
Nikiski	30.1	4.3	29.2	28.6	28.5	28.2	28.8	14.5	28.5	29.1	29.3	28.7	29.3		28.9	29.6	29.7	28.3	29.7	28.4	13.0	28.7
Northstar Production Island ¹	2.0	24.6	1.4	8.0	0.5	0.6	1.2	14.3	0.7	1.0	1.2	0.6	1.1	28.9		1.5	1.6	0.5	1.9	0.5	24.7	0.2
Oliktok Pt.	1.3	25.3	2.3	1.7	1.1	1.3	1.9	15.1	1.6	0.5	0.5	0.9	0.9	29.6	1.5		0.5	1.4	2.8	1.2	25.5	1.3
Oooguruk Production Island¹	1.4	25.4	2.4	1.8	1.2	1.4	2.0	15.2	1.7	0.6	0.6	1.0	1.0	29.7	1.6	0.5		1.5	2.9	1.3	25.6	1.4
PBOC	1.9	24.0	0.9	0.3	0.3	0.1	0.5	13.8	0.2	1.0	1.1	0.5	1.1	28.3	0.5	1.4	1.5		1.4	0.2	24.2	0.3
Point Thomson (Pad) ¹	3.2	25.5	0.5	1.1	1.7	1.5	1.3	15.2	1.5	2.4	2.5	1.9	2.5	29.7	1.9	2.8	2.9	1.4		1.6	25.6	1.7
Pump Station #1	1.7	24.1	1.1	0.5	0.1	0.1	0.7	13.9	0.4	0.7	0.9	0.3	0.9	28.4	0.5	1.2	1.3	0.2	1.6		24.3	0.3
Valdez	26.0	8.7	25.1	24.5	24.4	24.1	24.7	10.4	24.4	25.0	25.2	24.6	25.1	13.0	24.7	25.5	25.6	24.2	25.6	24.3		24.5
West Dock	1.8	24.4	1.2	0.6	0.3	0.4	1.0	14.1	0.5	8.0	1.0	0.4	0.9	28.7	0.2	1.3	1.4	0.3	1.7	0.3	24.5	

Transit time may be greater during winter whiteouts, break-up, foggy conditions, or other adverse weather.

¹Accessible by vehicle only in winter months via ice road. Expect travel times listed to vary due to ice road conditions and speed limits.

Dalton Highway legal weight limits:

- 2 axle 38,000 lb
- 3 axle 42,000 lb
- 4 axle 50,000 lb

Endicott Causeway legal weight limit: 80 tons gross, 40 tons per axle

West Dock Causeway legal weight limit: 130 tons gross

THIS PAGE DELIBERATELY LEFT BLANK

IDENTIFICATION OF AIRCRAFT, VESSELS, AND OTHER MEANS TO TRANSPORT EQUIPMENT AND PERSONNEL

This is a suggested list of resources. Inventory and availability vary.

AIRCRAFT

TYPE	QUAN- TITY	OWNERSHIP	PAYLOAD W/O PASSENGERS (LBS)	RANGE (MILES)	PASSEN- GERS	SPEED (MPH)	RUNWAY NEEDS	STATION LOCATION	OBLIGATION
S-64 E/F Aircrane	18	Erikson Air-Crane Inc.	Sling 18,000 to 21,000	6 with sling load	0	115-125	None	Central Point, OR	ACS MSA
Bell 206B	2	Air Logistics	Sling 350	245	4	115	None	Various AK locations	ACS MSA
Bell 206L	6	Air Logistics	Sling 500	280	6	120	None	Various AK loca- tions; one at PS4 (long-term contract to Alyeska)	ACS MSA and Mutual Aid Agreement
Bell 407	2	Air Logistics	Sling 1500	308	6	155	None	Various AK locations	ACS MSA
BO105CBS BOELKOW	2	Air Logistics	Sling 1000	260	5	125	None	Various AK locations	ACS MSA
Bell 212	1	Air Logistics	Sling 2000	390	13	115	None	Various AK locations	ACS MSA
Twin Otter	1	Conoco- Phillips	3000 on short VFR flights	560	15	155	2000 ft paved or gravel with heavy load	North Slope	Mutual Aid Agreement
Casa 212	1	Yute Air	5000 on short VFR flights	1000	18	175	3000 ft paved or gravel with heavy load	North Slope	Mutual Aid Agreement and CPAI contract
L-382 Hercules (C-130)	2	Lynden Air Cargo	48,000	3000	N/A	400	5000 ft paved or gravel with heavy load	Anchorage	Alyeska contract (4-hr standby)
B-737	3	CPAI Shared Services	12,000 in cargo area (limited space available)	2400	111	440	6000 ft paved; two aircraft fit- ted for gravel	Anchorage to conduct regular crew changes to/from the North Slope	Mutual Aid Agreement
DC6	5	Northern Air Cargo	28,000	2700	0	220	4000 ft paved or gravel	Various AK locations	ACS MSA
B-727	2	Northern Air Cargo	41,000	1800	0	450	5000 ft paved or gravel	Various AK locations	ACS MSA
ATR-42	1	Northern Air Cargo	12,000	1800	0	270	3500 ft paved or gravel	Various AK locations	ACS MSA
Bell 214ST	1	Evergreen	Sling 8000	400	17	150	None	Various AK locations	ACS MSA
Sikorsky S61R	1	Evergreen	Sling 6000	250	0	110	None	Various AK locations	ACS MSA
Bell 212 with pop-out floats	4	Evergreen	Sling 2500	250	9	105	None	Various AK locations	ACS MSA
Bell 205A1	1	Evergreen	Sling 3500	250	9	105	None	Various AK locations	ACS MSA
AS350B3 "ASTAR" with pop-out floats	2	Evergreen	2000	400	5	130	None	Various AK locations	ACS MSA
AS350B2 with pop-out floats	3	Evergreen	2000	350	5	120	None	Various AK locations	ACS MSA
Bell 206L3 "Long Ranger"	2	Evergreen	1075	210	6	100	None	Various AK locations	ACS MSA
B206B3 "Jet Ranger"	2	Evergreen	650	210	4	100	None	Various AK locations	ACS MSA
Beech King Air 200C	2	Evergreen	N/A	950	9	250	3000 ft paved or gravel	Various AK locations	ACS MSA

MSA = Master Services Agreement; CPAI = ConocoPhillips Alaska, Inc.

Evergreen = Evergreen Helicopters of Alaska; Air Logistics = Air Logistics of Alaska

Additional aircraft are available through contracts maintained by ACS with major Alaskan air carriers.

VESSELS

TYPE	NO.	(L x W x Depth, ft)	LIQUID CAP. (bbl)	DECK CAP.	LIGHT DRAFT	LOADED DRAFT	OWNER	AVAILABILITY	OBLIGATION
200 Series Barge (★ A1 classification)	2	200x60x12	5,500	2,750 s/t	1' 8"	12' 5"	Crowley	Stationed at Prudhoe Bay	ACS Master Services Agreement
River Class Tug (1,100 hp)	2	_	_	_	_	3'	Crowley	Stationed at Prudhoe Bay	ACS Master Services Agreement

In addition, ACS and the North Slope operators own approximately 94 vessels in a variety of sizes and types that can be used for transport of personnel and equipment (see Tactic L-6).

ROAD TRANSPORTATION

TYPE	QUANTITY	OWNERSHIP	AVAILABILITY	OBLIGATION
Bus	Minimum of 20	HAK, ConocoPhillips, Alyeska, Peak	Used on a daily basis throughout the North Slope oil fields	Owned by HAK, ConocoPhillips, Alyeska or available through ACS Master Services Agreement
Lowboy	Minimum of 20	HAK, ConocoPhillips, Alyeska, VECO, H.C. Price, Peak	Used on a daily basis throughout the North Slope oil fields	Owned by HAK, ConocoPhillips, Alyeska or available through ACS Master Services Agreement
Hi-Deck Trailer	Minimum of 20	HAK, ConocoPhillips, Alyeska, VECO, H.C. Price, Peak	Used on a daily basis throughout the North Slope oil fields	Owned by HAK, ConocoPhillips, Alyeska or available through ACS Master Services Agreement
Tractor	Minimum of 20	HAK, ConocoPhillips, Alyeska, VECO, H.C. Price, Peak	Used on a daily basis throughout the North Slope oil fields	Owned by HAK, ConocoPhillips, Alyeska or available through ACS Master Services Agreement

AIR-CUSHION VEHICLES

TYPE	QUANTITY	OWNERSHIP	CAPACITY	MOBE TIME
LACV 30	2 at Deadhorse	Alaska Hovercraft	30-ton payload	72 hr from cold standby
Griffon 2000PD Mk III	1	Crowley	5-ton payload	1 hr

ACS communications capabilities consists of the Deadhorse telecommunications center and transportable remotearea communications systems. The following describes these systems, their coverage, how they are used, and how they are deployed.

DEADHORSE TELECOMMUNICATIONS CENTER

Alaska Clean Seas Internal Radio and Telephone Communication

The telecommunication center houses equipment that supports day-to-day ACS operations and spill response management. A PABX telephone switch supports 90 internal extensions in the ACS offices, telecommunications center, and warehouse; nine local telephone utility trunks; and six trunks directly connected to ConocoPhillips, HAK and Alyeska Pipeline extensions via the private digital microwave system. A VHF repeater system at the center provides ACS with a wide-area radio system for day-to-day operations, as well as for Slope-wide logistical support. A radio dispatch center is located in the administrative office. Additional dispatchers can be located elsewhere in the ACS facility. The radio dispatchers can access 17 oil spill radios located in the production and pipeline corridor and operated by ACS and its member companies. Antennas for those radios located at the center are mounted on a 120-foot tower. Uninterruptible power supplies in the communication center power all critical equipment for up to one hour during AC power failures. A manual-start backup generator then takes over from the UPS for extended utility power failures.

Common Remote Control System for Permanent VHF Oil Spill Repeaters

A remote radio control system is installed in the telecommunications center. Remote control circuits for permanent VHF repeaters and marine coast stations, installed at strategic locations in the production and pipeline corridor, are routed via private microwave circuits into the system. Additional VHF and UHF radios located at the center are also wired into the system. Additional dispatch consoles are installed at Alyeska Pump Station 1, ConocoPhillips GKA, HAK BOC, and HAK PBOC, giving these companies access to all of the oil spill emergency radio systems. Other connections to specific radios in this network can be made using individual remote control stations. This network is the only wide area emergency communication system shared by operating companies on the North Slope.

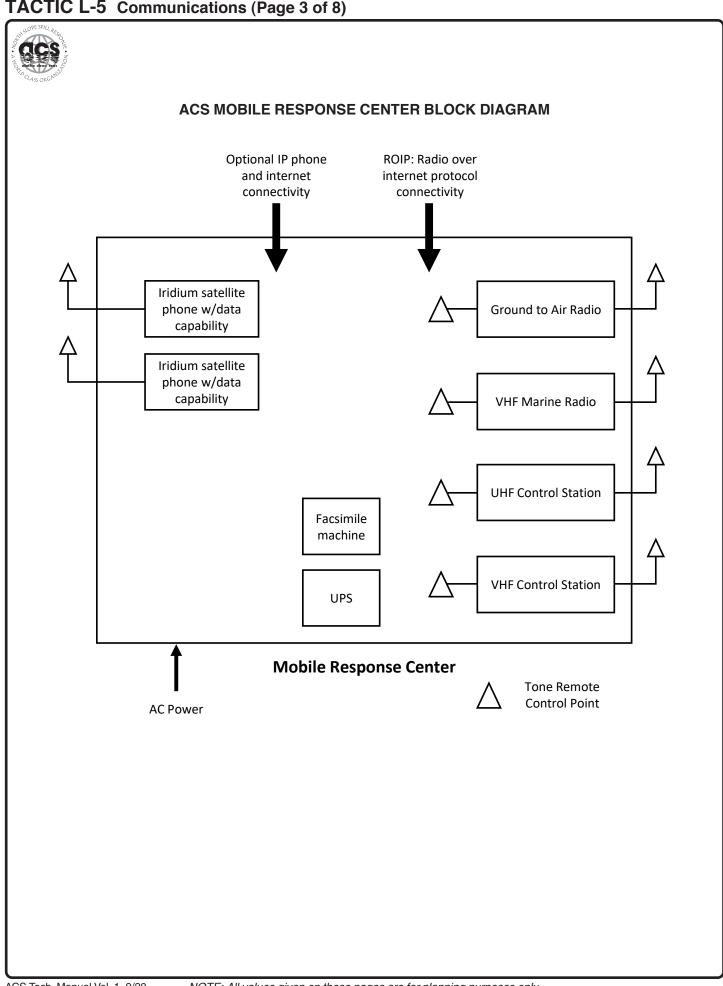
Storage and Maintenance Facility

The telecommunication center serves as a storage and maintenance facility for all fixed and transportable communication assets owned by ACS. Test equipment, maintenance tools, documentation, and spare installation and maintenance parts are maintained at the center.

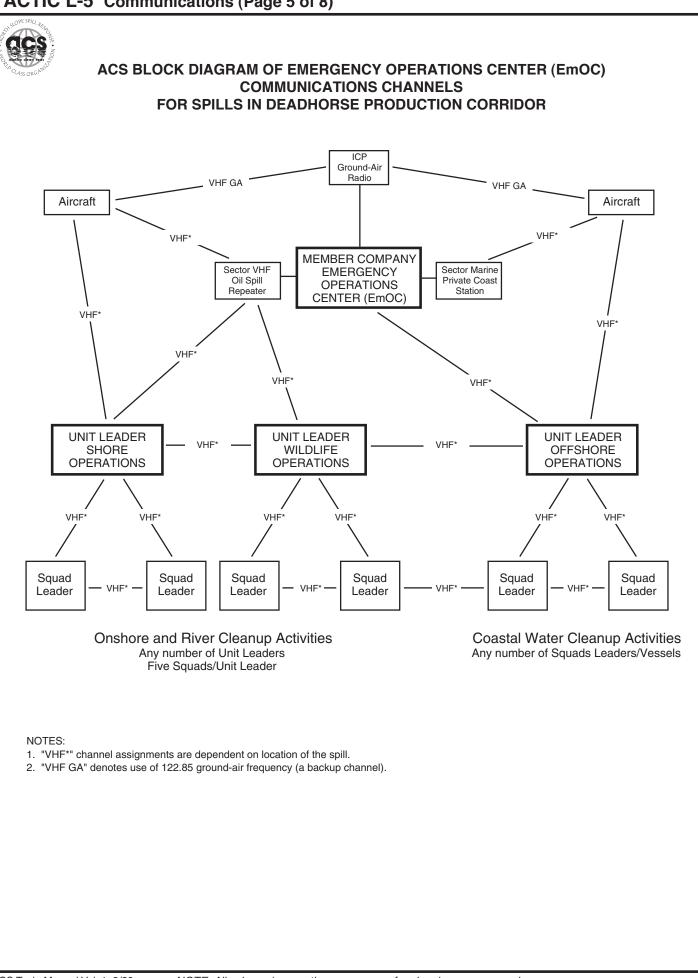
TRANSPORTABLE REMOTE AREA COMMUNICATION SYSTEMS

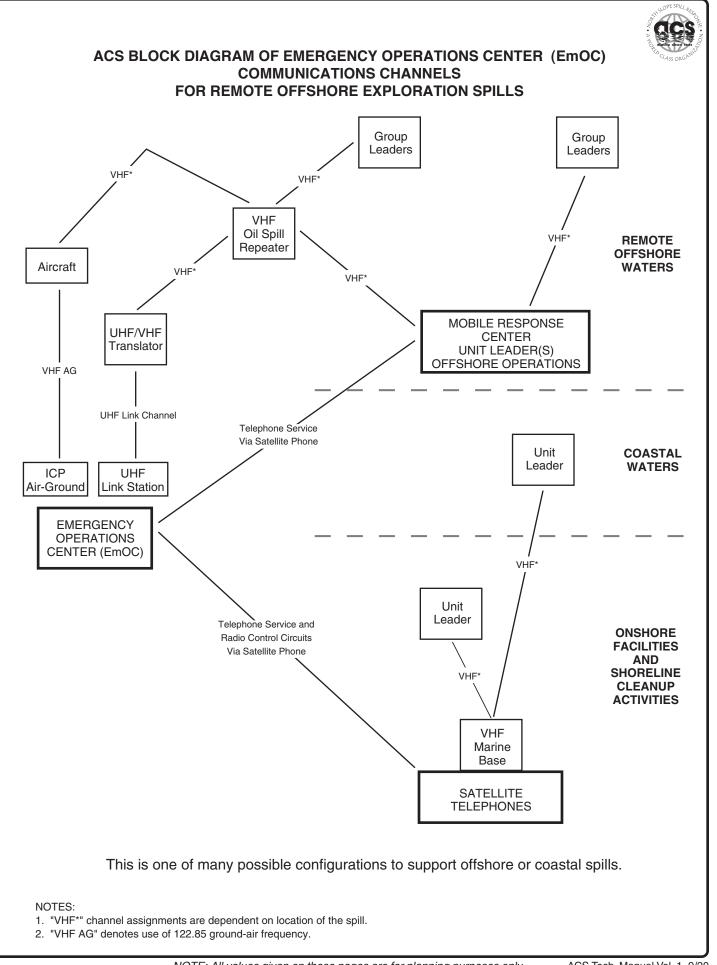
ACS maintains the following transportable communication systems at the Deadhorse Spill Response Center. These systems can be used to increase communication channel capacity in the production and pipeline corridor, or to extend communication links to remote areas of the North Slope extending between the Canadian Border and Barrow.

Portable Radios, Dial Radiotelephone Links, and Satellite Telephone Links

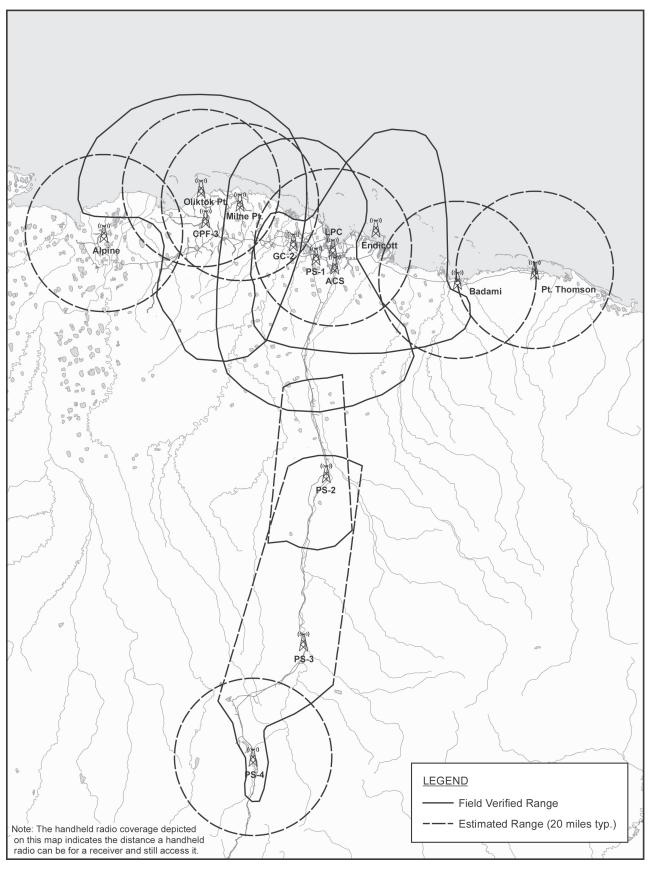

ACS owns approximately 200 VHF and UHF handheld radios, 10 base and mobile stations, 13 VHF and UHF portable repeaters, and seven portable UHF dial-radiotelephone links. Two portable towers and two winterized communication shelters with integral DC power and AC generators are available when deploying repeaters to remote sites. Iridium satellite telephones with data capabilities are installed on certain ACS vessels, and portable satellite phones are available at ACS in Deadhorse.


Mobile Response Center (MRC)


ACS has constructed an MRC consisting of two shelters (20 ft x 8 ft). Shelter One contains a variety of phone and radio communication links, and Shelter Two contains an office work area. The shelters can be deployed together or independently anywhere in Alaska to be used as a forward command center at the site of a remote emergency. The communication systems consist of Iridium satellite telephones with data capability, and a variety of VHF and UHF two-way radios and repeaters.


DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- The existing permanently installed Slope-wide systems should be all that is needed to respond to smaller spills.
 When a spill of a magnitude requiring the activation of the IMT occurs, the Communications Unit Leader will
 determine the most effective portable systems to be deployed and will develop a communications plan to suit the
 response.
- Proper communications procedures will optimize communications and must be maintained.
- Due to deployment/transit times, less effective but quickly deployed systems should be considered until more functional systems arrive on scene and are operational.
- Communications equipment operators must be properly trained if communications are going to be successful.
- · Member company communications personnel should be fully utilized to speed deployment of portable systems.



NORTH SLOPE HAND-HELD RADIO COVERAGE

NORTH SLOPE RADIO CHANNEL ASSIGNMENTS

				ater Rx			ater Tx	•
			Equipmen			Equipme	nt Rece	eives
CHANNEL	USE / LOCATION		In Mhz	PL c	or CC	In Mhz		
Logistics - Slo	pe Wide Roaming Logistics Cha	annel						
Slope Wide		Digital Mode - Master	161.160	CC	9	159.630	CC	9
Tactical Chann	nels Statewide							
OS-29	Tactical Net		173.225	1A	103.5	173.225	1A	103.5
OS-30	Tactical Net		173.275	1A	104.5	173.275	1A	104.5
OS-31	Tactical Net		173.325	1A	105.5	173.325	1A	105.5
OS-32	Tactical Net		173.375	1A	106.5	173.375	1A	106.5
ACS Fixed VHF	Repeaters Digital Local/ North	Slope					1	
OS-33	Alpine	Digital Mode - DMR-MotoTrbo	161.235	СС	1	159.585	СС	1
OS-35	Kuparuk	Digital Mode - DMR-MotoTrbo	154.585	СС	2	150.980	СС	2
OS-37	PBW GC2	Digital Mode - DMR-MotoTrbo	158.445	СС	14	159.480	СС	14
OS-39	PBE LPC	Digital Mode - DMR-MotoTrbo	158.325	СС	1	153.185	СС	1
OS-41	Endicott	Digital Mode - DMR-MotoTrbo	161.235	CC	3	159.585	CC	3
OS-43	Badami	-	154.585	CC	4	150.980	CC	4
OS-45	PTU	Digital Mode - DMR-MotoTrbo	161.325	CC	5	159.705	CC	5
OS-45	ENI OPP	Digital Mode - DMR-MotoTrbo	161.325	CC	12	159.705	CC	12
		Digital Mode - DMR-MotoTrbo						-
OS-47	Pump 2 (Alyeska)	Analog Mode - Local Use	161.325	1B	107.2	159.705	1B	107.2
OS-48	OS-47 Talk Around	Analog Mode - Local Use	159.705	1B	107.2	159.705	1B	107.2
OS-49	Pump 3 (Alyeska)	Analog Mode - Local Use	161.235	2A	114.8	159.585	2A	114.8
OS-50	OS-49 Talk Around	Analog Mode - Local Use	159.585	2A	114.8	159.585	2A	114.8
OS-51	Pump Station 4	Analog Mode - Local Use	154.585	2A	114.8	150.980	2A	114.8
OS-52	OS-51 Talk Around	Analog Mode - Local Use	150.980	2A	114.8	150.980	2A	114.8
Portable VHF F	Repeater/Talk Around Channels	Statewide						
OS-53	Oil Spill Repeater	Portable Repeater	160.530	ZB	97.4	150.815	ZB	97.4
OS-54	Tactical	OS-53 Talk Around	150.815	ZB	97.4	150.815	ZB	97.4
OS-55	Oil Spill Repeater	Portable Repeater	160.590	ZB	97.4	150.830	ZB	97.4
OS-56	Tactical	OS-55 Talk Around	150.830	ZB	97.4	150.830	ZB	97.4
OS-57	Oil Spill Repeater	Portable Repeater	160.650	ZB	97.4	150.950	ZB	97.4
OS-58	Tactical	OS-57 Talk Around	150.950	ZB	97.4	150.950	ZB	97.4
OS-59	Oil Spill Repeater	Portable Repeater	160.725	ZB	97.4	150.965	ZB	97.4
OS-60	Tactical	OS-59 Talk Around	150.965	ZB	97.4	150.965	ZB	97.4
								_
OS-61	Oil Spill Repeater	Portable Repeater	160.785	ZB	97.4	159.525	ZB	97.4
OS-62	Tactical	OS-61 Talk Around	159.525	ZB	97.4	159.525	ZB	97.4
OS-63	Oil Spill Repeater	Portable Repeater	160.860	ZB	97.4	159.795	ZB	97.4
OS-64	Tactical	OS-63 Talk Around	159.795	ZB	97.4	159.795	ZB	97.4
	VHF Repeater/Talk Around Cha	nnels North Slope						
OS-65	Deadhorse	Digital Mode - DMR-MotoTrbo	161.160	CC	9	159.630	CC	9
OS-67	Logistics (Kuparuk)	CPF3 (Kuparuk)	161.160	2A	114.8	159.750	2A	114.8
OS-68	Tactical	OS-67 Talk Around	159.750	2A	114.8	159.750	2A	114.8
Emergency Ch	annel Statewide							
OS-69	Tactical	North Slope Emergency	152.420	None	None	152.420	None	None
Marine Channe	els Statewide				•			•
OS-70	Coast Station - Ch 09	GC2 (Gwydyr Bay)	156.450	None	None	156.450		
OS-71	Coast Station - Ch 10	EPI (Prudhoe Bay)	156.500	None	None	156.500		
OS-72	Coast Station - Ch 11	DH Spill Response Cntr	156.550	None	None	156.550		
OS-73	Ch 12	Marine Tactical	156.600	None	None	156.600		
OS-74	Ch 14	Marine Tactical	156.700	None	None	156.700		
OS-74	Coast Station - Ch 16	Calling and Safety	156.800	None	None	156.800	-	
OS-75	Coast Station - Ch 18A	CPF3 (Harrison Bay)/Badami	156.900	None	None	156.900	+	
		, ,,	_	_				
OS-77	Ch 21A	Marine Tactical	157.050	None	None	157.050	-	
OS-78	Ch 22A	Marine Tactical	157.100	None	None	157.100		-
OS-79	Ch 23A	Marine Tactical	157.150	None	None	157.150		
OS-80	Ch 60A	Marine Tactical	156.025	None	None	156.025	1	
OS-81	Ch 61A	Marine Tactical	156.075	None	None	156.075		
OS-82	Ch 63A	Marine Tactical	156.175	None	None	156.175		
OS-83	Ch 68	Marine Tactical	156.425	None	None	156.425		
OS-84	Ch 69	Marine Tactical	156.475	None	None	156.475		
	Ch 71	Marine Tactical	156.575	None	None	156.575		
OS-85		- 		_				1
OS-85 OS-86	Coast Station - Ch 80A	North Star/Alpine	157.025	None	None	157.025		
	Coast Station - Ch 80A Ch 81A	North Star/Alpine Marine Tactical	157.025 157.075	None	None	157.025		

This tactic describes ACS's and the North Slope Operator's owned and contracted oil discharge containment, control, cleanup, storage, and transfer equipment. The objective is to fulfill for existing facilities the regulatory contingency planning requirements in 18 AAC 75.425 (e)(3)(F) Response Equipment, 18 AAC 75.445 (g) Response Equipment, and 30 CFR 254.24.

Other tactics outline response equipment operational characteristics, critical information on mobilization and deployment planning, and key planning parameters for specific equipment.

PREVENTIVE MAINTENANCE

Dedicated spill response equipment for both ACS and the North Slope Operators (except Alyeska) is maintained on a planned preventive maintenance schedule maintained by ACS. The exact maintenance conducted and the frequency interval vary based on the type of equipment, seasonal applicability, manufacturers' recommendations, and the amount of use the equipment receives. Preventive maintenance requirements and scheduling are managed through a computerized database titled CORE. This database also captures the maintenance history of all dedicated oil spill response equipment. ACS has the ability to print out the maintenance records of any piece of equipment maintained in the database. This information is available upon request.

Non-dedicated equipment available from contractors is maintained by the contractors.

EQUIPMENT INVENTORY LIST

All dedicated North Slope oil spill response equipment (ACS and the North Slope Operators) is tagged with a unique identifier number and its location, ownership, and maintenance history is tracked in CORE. A comprehensive inventory of response-dedicated equipment is listed in ACS's Master Equipment List (MEL), which is generated by CORE.

ACS updates CORE daily. CORE is updated as equipment is goes in or out of service, its location changes, it is surplused, and as purchases are made. The MEL can be sorted to provide a variety of reports including by equipment type, tag number, location, owner, and in/out of service. Copies of the MEL are available from ACS upon request.

A summary of dedicated oil spill response equipment available on the North Slope is provided in the following tables.

OUT-OF-SERVICE EQUIPMENT

ACS provides written notification to the Alaska Department of Environmental Conservation (ADEC) when a major piece of equipment goes out of service and a planholder's State of Alaska Response Planning Standard (RPS) cannot be met. Equipment going out of service may be planned or unplanned. A notice is submitted to ADEC at least 10 days in advance before the equipment goes out of service for scheduled maintenance of greater than 24 hours duration. A notice is submitted within 24 hours following an unplanned out of service equipment event. This notification protocol fulfills the regulatory requirement in 18 AAC 75.475, Notification of Nonreadiness.

NON-DEDICATED EQUIPMENT

ACS and the North Slope Operators have access to additional equipment to meet each planholder's RPS (Federal terminology = Worst Case Discharge (WCD)). The additional equipment is listed in Tables 10 and 10A. North Slope equipment is available from contractors through written agreements held by ACS and the planholders. The equipment is not dedicated to spill response, but provides spill response services when called on. Vessels- and barges-of-opportunity are deployed on spill responses with their typical staff and equipment.

TABLE 1 -- VESSEL SUMMARY

TYPE	LENGTH (ft)	WORKING DRAFT (ft)	CAPABILITIES	QUANTITY
Skiff	12-19	0.5-1.5	Personnel and small equipment transport	19
Airboat	19-28	0.5	Transport, boom towing	32
Workboat (A)	20-24	0.5-2	Transport, boom towing	16
Workboat (B)	26	1-3	Transport, boom towing	12
Workboat (C)	25-36	1-3	Transport, boom towing	14
Workboat (D)	38-42	2.5-3	Transport, boom towing, skimmer deploy- ment, minibarge towing	12
Workboat (E)	45-55	2-3.5	Transport, skimmer deployment	2
·			TOTAL	107

TABLE 2 -- BOOM SUMMARY

TYPE	NOTE	QUANTITY (ft)
Open Water (36" or greater)	_	19,195
Light Ocean (27"-35")	_	6,968
Harbor (20"-26")	_	41,700
Protected Water (10"-16")	_	32,200
Fast Water (14")	_	178,975
Shore Seal	_	21,250
Fire (20")	3M Ceramic Log	5,950
Fire (27")	Hydro Boom	3,000
Fire (30")	3M Ceramic Log (3750') and PYRO Boom (3000')	6,750
Fire (33")	Hydro Boom	3,000
Fire (42")	3M Ceramic Log	700
NOFI	_	5,428

TOTAL 325,116

Boom Barrier: MegaSecur Dams (28" x 25'), Qty = 4

MegaSecur Dams (28" x 50'), Qty = 2MegaSecur Dams (39" x 30'), Qty = 1MegaSecur Dams (39" x 50'), Qty = 1

Harbor Buster: 3,963 gallon, Qty = 2

TABLE 3 -- PUMP SUMMARY

DESCRIPTION	SIZE	QUANTITY	NAMEPLATE PUMPING CAPACITY (gpm)
Diaphragm, Air	0.5" - 3"	20	15 - 260
Diaphragm, Diesel	2"	3	86
Diaphragm, Diesel	3"	40	90 - 100
Diaphragm, Gas	3"	12	80
Diaphragm, Hydraulic	2"	1	
Diaphragm, Hydraulic	3"	6	
Submersible, Hydraulic	3"	4	110 - 132
Submersible, Hydraulic	6"	17	440
Trash, Diesel	2"	28	220
Trash, Diesel	3"	46	340 - 400
Trash, Diesel	4"	17	370 - 750
Trash, Gas	1"	2	32
Trash, Gas	1.5"	2	74
Trash, Gas	3"	1	340
Trash, Hydraulic	2"	1	60
Trash, Hydraulic	3"	7	180 - 200
Trash, Hydraulic, Floating	3"	1	185
Peristaltic, Diesel	2"	14	115
Peristaltic, Hydraulic	2.5"	3	53
Peristaltic, Hydraulic	3"	1	79

TOTAL 226

TABLE 4 -- HOSE SUMMARY

HOSE SIZE	QUANTITY (ft) OF DISCHARGE HOSE	QUANTITY (ft) OF SUCTION HOSE
2"	2150	2,512
3"	6685	5,662
4"	2625	1,470
5"	7000	0
6"	2118	0
TOTALS	20,578	9,644

TABLE 5A -- SKIMMER SUMMARY

ТҮРЕ	MANUFACTURER NAME AND MODEL	QTY.	NAMEPLATE CAPACITY (bph)	DERATED CAPACITY ¹ (bph)	PKG
Brush, Rock Cleaner	er Lamor LRC		75	15	А
Brush, Skimmer	Lamor MM12	12	285	57	Α
Brush, Skimmer	Lamor MM20	8	168	34	Α
Brush, Skimmer, 5 Belt	Lamor MM30	1	252	50	Α
Brush, Skimmer, 3 Belt	Lamor LAM12	2	314	57	Α
Brush Conversion for Desmi 250	Lamor LBA Quattro	1	250	50	Α
Brush Skimmer Duplex	Komara KI/0330	1	95	19	Α
Disc Skimmer	Crucial 13/24	4	121	24	Α
Disc Skimmer	Crucial 13/30	6	200	40	Α
Disc Skimmer	Morris MI 11/24	4	29	6	Α
Disc Skimmer	Morris MI 30	3	143	10 ²	А
Disc Skimmer	Vikoma 12K MKII	8	100	10 ²	А
Disc Skimmer	Vikoma 30K	10	189	10 ²	А
Disc Skimmer	Komara Star	1	20	4	А
Drum/Brush Combination	Action Petroleum 24MD	14	100	20	Α
Drum/Brush Combination	Aqua Guard RBS 10/1D	3	138	28	А
Drum Skimmer	Crucial 1CD18H-36	6	120	24	В
Drum Skimmer	Morris Mini	2	2	0.4	Α
Drum Skimmer	Elastec TDS-118	8	33	7	А
Drum Skimmer	Elastec TDS-136	2	60	12	Α
Drum Skimmer Groovy	Elastec Magnum 100	4	228	46	Α
Heli Skimmer	Kepner SeaVac 660	1	944	189	Α
Manta Ray Skimmer	Slickbar Flexible	10	54	11	В
Manta Ray Skimmer	Slickbar Rigid	37	54	11	В
Vacuum Skimmer	Elastec Mini Vac II	5	252	50	Α
Rope Mop Skimmer	H. Hendricksen Foxtail V.A.B 4-9	1	249	75 ²	Α
Rope Mop Skimmer	H. Hendricksen Foxtail Mini	1	19	4	Α
Rope Mop Skimmer	Containment Sysetms Inc. MW-41	10	14	5	А
Rope Mop Skimmer	Containment Sysetms Inc. MW-62	3	29	6	А
Rope Mop Skimmer	Centrifugal Systems Inc. Z14-E	16	14	5	А
Rope Mop Skimmer	Oil Mop Inc. Mark-2-3E	3	14	5	Α
Rope Mop Skimmer	Crucial C14-E	2	14	5	Α
Brush Skimmer Side Collector	LORI LSC-3	8	271	217 ²	A ³
Weir Skimmer	DESMI 250 Harbor	2	440	88	Α
Weir Skimmer	DESMI 250 Ocean	1	628	126	Α
Weir Skimmer	Vikoma Fasflow	1	486	97	Α
Weir Skimmer	Vikoma Mini Fasflow	4	143	29	Α

Package A skimmers include the skimmer head, power pack, hoses (hydraulic, discharge, suction), fittings, and spare parts. Package B skimmers can be operated by a variety of pumps.

TABLE 5B -- OPERATIONAL CHARACTERISTICS AND LIMITATIONS OF SKIMMERS

Skimmer Type	Operational Characteristics	Limitations
Weir	Use in calm water and a thick layer of oil where the edge of the weir is at the water/oil interface. Small floating weir skimmers most stable in calm water or a gentle swell. Generally good for recovery of light- and mediumviscosity oils; not effective with heavy lubricating oils, highly weathered crudes, water-in-oil emulsion, or Bunker C. Small floating weirs are easily transported. Maintenance for most is limited to debris removal during operation and post-cleanup cleaning.	On some models, skimming, or "cut," depth is manually pre-set and adjusted for slick thickness; continual adjustment of cut depth and pumping rate can result in large amounts of water being collected with the oil. Are likely to be clogged by highly viscous oils. Conventional floating weir skimmers may become obstructed by debris. Floating weir skimmers affected by waves. Recovery rates limited only by pumping rate in a thick layer of oil. For most small weir skimmers, pumping rate is decreased to increase oil/water collection ratio. Transportability of larger devices mounted to boats may be limited by size and characteristics of boat.
Rope mops	 Versatility allows effective use in a variety of wave conditions. Generally have high recovery efficiency. Generally most effective in light- to mediumviscosity oils. Can recover heavy oils, but not non-flowing products. Can operate in very shallow water, amid debris or mixed ice. Can be used in swift rivers or under ice. Recover a wide range of products, are not fouled by debris, and can be maneuvered easily by adjusting the pulley system. 	 Viscous oil tends to gum up the rope mop and slow down oil wringers. Smaller diameter mops work well on viscous oil. Effective on small amounts of oil, but slow for large quantities. Generally work better in warmer temperatures (60° F and above). Setups may be more difficult to construct and require more operator attention than some other mechanisms. Oil may drip on shore as rope is drawn from water. Rope wears quickly when used in rough areas. Rope may twist in rough currents.
Disc	 Larger disc skimmers equipped with vanes to protect collection mechanism from debris. Vanes also permit collection in light ice conditions. Smaller disc skimmers can be used as floating skimmers for spills inland or at industrial sites. Can recover slicks as thin as 1 mm while maintaining efficiency up to 97%. Recovery rate depends on slick thickness and disc-rotation rate. Generally most effective with medium-viscosity oils. Maintenance needs are generally low and involve periodic cleaning and/or replacement of scrapers. 	Often expensive, vulnerable to obstruction by debris, and more likely to break down than other recovery devices. Do not work well on viscous oil or oil laden with debris. Large skimmers may be difficult to transport. Heavy oils adhere readily and may cause clogging. Light oils do not adhere to the discs well, but can be recovered.
Drum	Perform in a broad range of oil viscosities. Are likely to handle debris better than disc skimmers. Recovery rates generally high, especially for larger drum skimmers.	Small drum skimmers are not effective in rough seas. Recovery efficiency may decrease in slicks less than a few millimeters thick.
Brush	 Recovery rates likely to be very high. For drum brush skimmers, tolerance to debris and broken ice is good. Range of oil recovery is broad for drum brush skimmers, with brushes working well on any viscosity oil that can be transported out of the water on the brush heads. Standard chain brush size allows effective recovery of products ranging from #2 fuel oil to weathered crude and #6 fuel oil. Chain brush systems are not readily affected by debris. Ross. 2013. World Catalog of Oil Spill Response Products, te 	Transport of large drum brushes may be cumbersome.

SOURCE: SL Ross. 2013. World Catalog of Oil Spill Response Products, tenth edition.

¹ As per ADEC, derated capacity = 20% of skimmer nameplate capacity.

² Non-standard derated capacity approved by ADEC, 3/2/1999.

³ Lori skimmers can be run with vessel hydraulics or with an independent system.

TABLE 6 -- STORAGE

TYPE	VOLUME (gal)	QUANTITY	TOTAL CAPACITY (gal)
650 BBL Barge	27300	1	27,300
Floating Open Top Tank	2100	1	2,100
125 BBL Mini-Barge*	5376	2	10,752
249 BBL Mini-Barge*	10458	13	135,954
Tank Bladder	500	3	1,500
Tank Bladder	5000	4	20,000
Tank Bladder, Liftable	1320	8	10,560
Tank Bladder, Liftable	2640	6	15,840
Tank, Folding	400	2	800
Tank, Folding	600	33	19,800
Tank, Folding	1000	5	5,000
Tank, Folding	1500	34	51,000
Tank, Folding	3000	26	78,000
Tank, Fast	400	1	400
Tank, Fast	500	8	4,000
Tank, Fast	1500	2	3,000
Tank, Fast	2000	7	14,000
Tank, Fast	2400	48	115,200
Tank, Open Top in Satchel	2500	50	125,000
Tank, Open Top	3000	1	3,000
Tank, Upright	16800	1	16,800

TOTAL 660,006

TABLE 7 -- BURNING EQUIPMENT

TYPE	QUANTITY
Heli-Torch (55 gal)	6
Air Deployable Igniter	1436
Heli-Torch Batch Gel Mixer	2

TABLE 8 -- LOGISTICS EQUIPMENT

QUANTITY
11
12
1
3
10
5
52
41
1

TABLE 9 -- TRACKING & SURVEILLANCE EQUIPMENT

TYPE	QUANTITY
METOCEAN I-Sphere satellite tracking buoy	12
Ice-Hardened Hull Attachments for iSpheres	8

Tactic L-5 describes the communication equipment inventory.

Tactic L-4 describes equipment available to transport equipment and personnel.

^{*}The maximum draft of the mini-barges is 4 ft.

TABLE 10 -- EQUIPMENT INVENTORY BY CONTRACTOR

(current as of November 2019; subject to change; based on availability)

Equipment Type	Total	Ownership
Vac Truck	144	AFC, ASRC, ASRC2, HAK, COP, PEAK, NES, CRUZ, WP
Super Sucker 15 yd	69	AFC, ASRC2, COP, PEAK, NES, WP
Rolligons 50 Ton	6	COP, PEAK
Rolligons 25 Ton	9	PEAK
Rolligons 15 Ton	7	PEAK, CRUZ
Rolligon w/water auger pump	35	AFC, PEAK, CRUZ
Truck Tractor	392	AFC, ASRC, ASRC2, BRICE, HAK, CONAM, COP, PEAK, DELTA, NES, CRUZ, WP
Loader	248	AER, AFC, ASRC, ASRC2, BRICE, HAK, CONAM, COP, PEAK, DELTA, TANKCO, NC, NES, CRUZ, WP
Trimmer	25	AER, AFC, ASRC2, HAK, COP, PEAK, CRUZ, WP
Backhoe, Rubber Tired	8	HAK, PEAK, NC
Grader	45	AER, AFC, ASRC2, BRICE, HAK, CONAM, COP, PEAK, CRUZ
Trencher	12	AFC, ASRC, CONAM, PEAK, NC, CRUZ
Vessel	6	BRICE, NES
Barge	1	NES
Tucker Sno-Cat	108	AER, AFC, ASRC, BRICE, HAK, COP, PEAK, DELTA, NES, CRUZ
Dozer	69	AER, AFC, ASRC, BRICE, HAK, COP, PEAK, NES, CRUZ, WP
Snow Melter	3	AFC, PEAK
Snow Blower	70	AFC, ASRC2, BRICE, HAK, CONAM, COP, PEAK, NC, NES, CRUZ
Excavator	58	AER, AFC, ASRC, BRICE, HAK, CONAM, COP, PEAK, NC, CRUZ, WP
Skid Steer Loader	43	AER, AFC, ASRC, ASRC2, BRICE, HAK, CONAM, COP, NC, WP

NOTE: See Tactic L-9 for a list of contact names and phone numbers for the referenced contractors.

ACS Response Equipment Specifications (Page 8 of 8) TACTIC L-6

TABLE 10A – DUMP TRUCKS INVENTORY BY CONTRACTOR

(current as of November 2019; subject to change; based on availability)

Equipment Type	Total	Ownership
Dump Truck 10 yd	15	AER, ASRC, HAK, COP
Maxi-haul 25 yd	84	AFC, ASRC2, BRICE, COP, PEAK, NES, CRUZ, WP
Belly Dump	6	ASRC2, COP
Articulating Dump Truck 25 yd	30	AFC, ASRC2, BRICE, COP, PEAK, CRUZ
Euclide B-70	32	AFC

TABLE 10B -- TANK INVENTORY BY CONTRACTOR

(current as of November 2019; subject to change; based on availability)

Equipment Type		
	Total	Ownership
Tanks > 500 bbls	51	HAK, TANKCO, WP
Tanks 300-499 bbls	130	HAK, COP, TANKCO, WP
Tanks 200-299 bbls	28	HAK, COP, TANKCO, CRUZ, WP

TABLE 10C – SUPPORT EQUIPMENT INVENTORY BY CONTRACTOR

(current as of November 2019; subject to change; based on availability)

Equipment Type	Total	Ownership
Envirovac	58	AFC, ASRC2, BRICE, CONAM, COP, PEAK, CRUZ, WP
Fuel Truck	52	AER, AFC, ASRC, ASRC2, BRICE, CONAM, COP, PEAK, CRUZ, WP
Service Truck	70	AER, AFC, ASRC, ASRC2, BRICE, HAK, CONAM, COP, PEAK, DELTA, NES, CRUZ, WP
Bus ≤ 30 passengers	75	AER, AFC, ASRC, ASRC2, HAK, CONAM, COP, DELTA, NES, CRUZ, WP
Bus > 30 passengers	48	AER, AFC, ASRC2, BRICE, HAK, CONAM, COP, CRUZ, WP

NOTE: See Tactic L-9 for a list of contact names and phone numbers for the referenced contractors.

Environmental conditions can sometimes limit response work. Some limitations are based on safety, while others concern equipment effectiveness. Tables 1A and 1B list the percentages of time that some variables reduce effectiveness of response for planning purposes.

TABLE 1A

EXAMPLES OF CONDITIONS THAT COULD REDUCE EFFECTIVENESS OF MECHANICAL RESPONSE ARRANGED BY THE LIMITING VARIABLE

Table lists percentage of time that response effectiveness may be reduced.

OPERATING LIMIT	WINTER Nov 1 - May 15		TER BREAKUP SUMMER AND FALL						EEZE-UP, MEDIAN PERIOD Oct 1 - 31
Daily Mean Temperature <-35°F¹	4%	Avg. 3.3 occurrences; avg. 2.6 days duration	_	-	-	-	-	-	
Daily Mean Winds 15kt ¹ (Typically with gusts >20 kt)	20%	Avg. 21 occurrences; avg. 2 days duration.	8%	Avg. 2.5 occurrences; avg 1.4 days duration	16%	Avg. 7 occurrences; avg. 2.4 days duration	14%	Avg. 1 occurrence; avg. 4.6 days duration	
Daily Mean Visibility <1 mi.¹	3%	6 occurrences; avg. <1 day; up to 2 days ⁵	0%	NOAA's summary charts for Deadhorse report zero occurrences in 1995, 1996, and 1997.	4%	Avg. 4 occurrences; avg. 1 day duration ^{1,5} July shoreline sites records show percentages of time: 18%, some fog; <5%, fog with visibility <.5 nm; 10%, visibility <.5 nm; 20%, low cloud ceiling <300 ft and visibility <1 nm.³ July offshore records show 22% of time visibility <.5 nm³.	-	_	
Daily Mean Wind Chill <-35°F¹	37%	Avg. 11 ccurrences; avg. 7 days duration	<1%	None in last 5 years	_	-	-	-	
Flight Cancellations ⁶	5%	Some on 2 days per mo. avg.	5%	Some on 1 day per mo. avg.	5%	Some on 3 days per mo. avg.	5%	Some on 2 days per mo. avg.	
White-out	5%	_	_	_	_	-	_	-	
Broken ice coverage >10% and <100%	0%	-	100%	Depends on location ² ; when encountered by containment boom, limits recovery – Tactics R-16 to R-20	10%	Depends on location ² ; when encountered by containment boom, limits recovery – Tactics R-16 to R-20	80%	When encountered by containment boom, limits recovery – Tactics R-16 to R-20	
Bottom Fast River Ice Lagoon Ice and Moving Floes	-	-	20- 40%	Sag. River: July 7 for 9 days; Kuparuk River: July 7 for 19 days; Colville River: July 1 for 13 days ⁷	-	-	-	-	

TABLE 1A (CONT'D)

OPERATING LIMIT	N	WINTER lov 1 - May 15		BREAKUP y 15 - June 30		MMER AND FALL ne 30 - Sept 30	M	FREEZE-UP, IEDIAN PERIOD Oct 1 - 31
Over-Ice Flow	-	-	30%	Sag. River: May 29 for 7 days; Kuparuk River: May 31 for 13 days; Colville River: May 30 for 12 days ⁷	-	-	-	-
High Water Flows	-	-	30%	Sag. River: May 23 for 12 days; Kuparuk River: May 29 for 14 days; Colville River: May 27 for 15 days ⁷	-	-	-	-
Shallow Coastal Water	-	-	0%	-	0%	-	-	-
Storm Surges Flooding Roads and Stranding Vessels	-	-	<1%	-	<1%	-	-	-
Wave Height >3 feet	-	-	-	-	<5%	Up to 2 occurrences per mo.; 8 hour median ^{1,4}	-	-
Atmospheric Icing	20%	Up to 5 days per mo. no flying;Avg. 3 additional days partial flight restrictions ⁵	-	-	20%	Up to 5 days per mo. no flying; Avg. 3 additional days partial flight restrictions ⁵	20%	Up to 5 days per mo. no flying;Avg. 3 additional days partial flight restrictions ⁵
Spine Road to Kuparuk and Milne Pt. Facilities Washed Out or Closed	-	-	33%	Avg. Kuparuk River Floods: May 31 through June 13 ⁷	-	-	_	-
Darkness ³	50%	-	0%	-	27%	-	40%	-
Sea Ice Load Bearing Capacity:	40%	-	100%	-	_	-	100%	-
Heavy Equipment Light Equipment	20%	-	0%	-	_	-	100%	-

¹ Based on Deadhorse records for 1995, 1996 and 1997 from NOAA Global Summary of the Day Web Page, www.ncdc.noaa.gov/cgi-bin/gsod_xmgr

² D.F. Dickins and Associates Ltd., Vaudrey and Associates, S.L. Ross Environmental Research Ltd., December 2000. Oil Spills in Ice Discussion Paper. Prepared for Alaska Clean Seas.

³ Baldwin, R.G., Brower, W.A. Jr., Leslie, L.D., Williams, C.N. Jr., Wise, J.L. 1988. Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska; Volume III; Chukchi-Beaufort Sea. National Oceanic and Atmospheric Administration, U.S. Minerals Management Service, Naval Oceanography Command.

⁴ Personal conversation with Peter Gadd August 20, 1998 and 1

⁵ Personal conversation with Robert Glover, Era Helicopters, Deadhorse, Alaska

⁶ Personal communication, Prudhoe Bay Airport, 1997

⁷ U.S. Army Corps of Engineers, Alaska District. 1989. Endicott Environmental Monitoring Program Final Report, Ice Breakup/Freezeup.

TABLE 1B

EXAMPLES OF CONDITIONS THAT COULD REDUCE EFFECTIVENESS OF MECHANICAL RESPONSE ARRANGED BY TYPE OF RECOVERY RESOURCE

Table lists percentage of time that response effectiveness may be reduced.

These values are provided to meet ADEC contingency planning purposes [18 AAC 75.425(e)(3)(D)]. In an actual spill response, operating limits will be determined by on-site personnel.

RESOURCE	OPERATING LIMIT	WINTER Nov 1 - May 15	BREAKUP May 15 - June 30	SUMMER & FALL June 30 - Sept 30	FREEZE- UP MEDIAN DATES October 1-31
Hydraulics and Cables	Temperature -35° F	4%	_		_
Personnel	Wind Chill -35° F	37%	<1%	1	_
Hoists and Lifts	15 kt with 20 kt gusts	20%	8%	16 %	14%
Vehicles	White out, visibility restricted to a few feet, 10 to 20 ft above ground	5%	_	-	_
	Over ice flow restricts passage	_	30%	1	_
	Storms from the west can flood roads	_	<1%	<1%	_
Flight Cancellations	Visibility	5%	5%	<5%	<5%
Booms	Moving ice restricts booming	_	20% to 40%	_	_
	High water flow	_	30%	_	_
	Broken ice coverage >10% and <100%	0%	100%	10%	80%
Recovery with Vessels	Some open leads - recovery and trajectory uncertain	100%	100%	_	50%
	Storm from the east can lower coastal water and strand vessels	_	<1%	<1%	_
	Over ice flow restricts	_	30%	_	_
	Waves 3 feet	_	_	<5%	_
	Broken ice coverage >10% and <100%	0%	100%	10%	80%; when encountered by containment boom, limits recovery — Tactics R-16 to R-20
Helicopter	Visibility < 0.5 nm	5%	5%	5%	5%
	Atmospheric icing	3%	_	_	3%

The master of the vessel determines the wave heights that the boat will operate in. The wave heights at which vessels typically operate are affected by several variables, including the experience of the crew, the wind speed, and the direction of the wind relative to the vessel and to the adjacent shoreline.

Realistic Maximum Operating Limitations (Page 4 of 8) TACTIC L-7

TABLE 2

THRESHOLD LIMIT VALUES FOR WORK AND WARM-UP SCHEDULE FOR FOUR-HOUR SHIFT

Wind chill limits workers' outdoor efforts. Workers in wind chill temperatures between -25°F and -40°F take more break time indoors. When wind chill is colder than -45°F, non-emergency work ceases. See Table 2.

AIR TEMPE SUNN	ERATURE - Y SKY	NO NOTIC		5 MPH	WIND	10 MP	H WIND	15 MPI	H WIND	20 MP	H WIND
°C	°F	Max. Work Period	No. of Breaks								
-26° to -28°	-15° to -19°	Normal	1	Normal	1	75 min.	2	55 min.	3	40 min.	4
-29° to -31°	-20° to -24°	Normal	1	75 min.	2	55 min.	3	40 min.	4	30 min.	5
-32° to -34°	-25° to -29°	75 min.	2	55 min.	3	40 min.	4	30 min.	5	1	nergency
-35° to -37°	-30° to -34°	55 min.	3	40 min.	4	30 min.	5		ergency	work sho	ould cease
-38° to -39°	-35° to -39°	40 min.	4	30 min.	5		nergency	work sho	uld cease		
-40° to -42°	-40° to -44°	30 min.	5	Non-em		work sho	uld cease				
-43° & below	-45° & below	Non-eme		work shou	uld cease		<u> </u>		<u> </u>		<u> </u>

Source: American Conference of Governmental Industrial Hygienists, Inc. 1994-1995. Threshold Limit Values, Chemical Substances and Physical Agents and Biological Exposure Indices.

Note: Schedule applies to 4-hour work period with moderate to heavy work activity, with warm-up periods of ten minutes in a warm location and with an extended break (e.g., lunch) at the end of the 4-hour work period in a warm location.

GUIDE FOR ESTIMATING WIND VELOCITY

5 mph Light flag moves

10 mph - Light flag fully extended 15 mph - Raises newspaper sheet 20 mph - Blowing and drifting snow

PHASE 1, 2, OR 3 WEATHER CONDITIONS

Phase 1: Caution - Reduced Visibility. Travel on the field is permitted using extreme caution. Reduce speed and be certain all equipment (radio, lights, etc.) is operating properly. Arctic gear is required.

Phase 2: Restricted - Convoy Only Travel in the Field. Travel is permitted in convoys of two or more vehicles only. Radio communication between vehicles in the convoy is required.

Phase 3: Closed - Critical or Emergency Travel Only. Travel will be by heavy equipment convoy only.

OFFICIAL TEMPERATURE INFORMATION SOURCES

- National Weather Service Alaska Region Headquarters online forecast for North Slope: http://www.arh.noaa.gov/zonefcst.php?zone=203
- National Weather Service Alaska Region Headquarters recorded forecast: (800) 472-0391
- FAA Weather Data Service for Deadhorse (SCC): ID = SCC / Type = WX ASOS / Frequency = 118.4 MHz / Phone = (907) 659-2591
- ConocoPhillips Channel 5, 5:30 a.m. to 5:30 p.m.
- Prudhoe Bay PBW HAK Channel 5
- Kuparuk Operation NSK Security (Phone 7997)

SEA ICE BEARING CAPACITY

Loads borne on sea ice sheets generally are a simple function of the square of the ice thickness (e.g., Gold, 1971). Vaudrey (1977) calculated the thickness of sea ice to support a load based on additional factors, including ice temperature, time of load application, and the physical properties of ice as an engineering material.

Figure 1 shows curves of recommended sea ice thicknesses vs. load. If an abnormally warm period intervenes winter, the spring load curve applies temporarily if internal ice temperatures rise above 23°F. Ice temperatures are measured with a thermistor drilled into an ice core between one and two feet below the solid ice surface.

Figure 1 applies to operations on a continuous free-floating ice sheet with no free edges, working cracks or manmade trenches and slots. Random small surface cracks commonly occur due to thermal stresses, and are particularly noticeable whenever the snow cover is removed. These features usually have a negligible effect on ice strength. Exceptions are wet "active" cracks where they join to form a wedge and the risk of breaking through becomes acute. Doubts about the character or influence of cracks or slots cut in the sheet on bearing capacity means suspension of vehicle operations until the integrity of the ice is determined. Travel over unprepared sea ice incurs risks due to the nature of the material and unpredictable environmental factors (e.g., unusually warm temperatures, currents under the ice, hidden cracks). Vehicles have gone through the ice with little or no warning, even when operating within conservative guidelines. An experienced field ice technician accompanies vehicles traveling over unprepared sea ice.

Figure 1 applies to moving loads and/or short term parking up to about four hours. Thicknesses shown in Figure 1 are not adequate for extended storage of heavy loads. Curves are based on recommended bearing capacities developed for wheeled vehicles and aircraft. Tracked and terra-tired vehicles may be able to operate safely over thinner ice sheets early in the winter by distributing the load over a greater area. See Table 3 for examples of heavy vehicles and aircraft borne by winter sea ice in the Prudhoe Bay area. Table 4 provides guidelines for the minimum sea ice thickness for various weights of moving vehicles. Table 5 lists vehicle travel speeds to minimize dynamic effects associated with resonant waves on the sea ice.

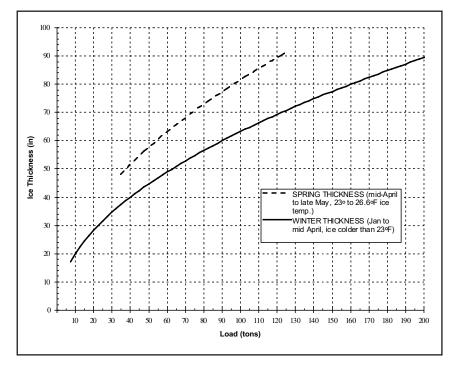
Approximately 20 inches of sea ice is recommended as a starting thickness to begin conventional vehicle operations with wheeled vehicles such as small trucks. Lighter equipment such as Ditchwitches and snowmachines can operate on ice 12 to 20 inches thick, as long as the sheet is continuous and stable and operators accept the increased risk. Workers should not be sent out on the ice until it reaches 12 inches in thickness.

Early season operations involve strict safety measures, continuous ice monitoring and evacuation plans. Strong winds can lead to rapid breakup of young sea ice. Heavy equipment operations on ice less than 20 inches thick is limited to areas inside the barrier islands with shallow water less than four feet in depth.

Late-season ice can support a variety of vehicles without an ice road. Figure 2 shows the relative durations that equipment can work on the sea ice before breakup.

Freshwater ice supports heavier loads than sea ice. See Figure 3.

IMPORTANT NOTE


- · When working on ice, make sure the thickness is known.
- · Be conservative in using the graphics in this tactic.

Realistic Maximum Operating Limitations (Page 6 of 8) TACTIC L-7

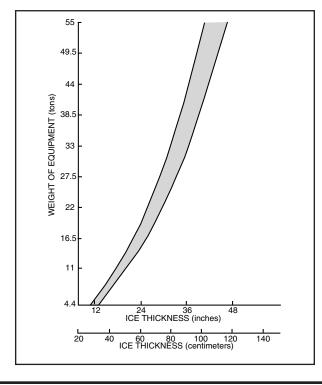


FIGURE 1 RECOMMENDED SEA ICE THICKNESSES VS. LOAD

20 inches is starting thickness in early winter. Curves are for moving vehicles or short term parking. Wheeled vehicle operations halt when the internal ice temperature at 1 to 2 ft depth rises above 26.6 °F.

FIGURE 2 MINIMUM THICKNESS TO SUPPORT LOADS ON FRESHWATER ICE

TABLE 3 -- WEIGHTS FOR SELECTED VEHICLES AND HEAVY EQUIPMENT

	GROSS WEIGHT INCLUDING PAYLOAD (LB)	ESTIMATED PAYLOAD (LB)
Cat D-8	71,000	N/A
Peak RD-85	56,000	30,000
Kenworth 953A	121,000	60,000
Grader 12G	29,000	N/A
DHC Twin Otter	12,500	4,500
C130H Hercules	155,000	51,000
Bell 212	11,000	5,000
Bell 214	17,500	8,000
Boeing Chinook	51,000	28,000
B-70	156,000	65,000
BV-107	19,000	11,500
Bobcat w/Trimmer	8,900	N/A
Bobcat w/Auger	7,900	N/A
Crew Cab Pickup	7,500	400
Ditch Witch R-100	9,500	N/A
Snowmachine w/Sled	545	200
966 Loader	47,000	10,000
Vac Truck	75,000	40,000
Max Haul	74,000	32,000
Tandem Trailer	52,000	22,000
Wide-Track Dozer	35,000	N/A

NOTE: Actual weights may vary with different options and model numbers.

TABLE 4 -- MINIMUM ICE THICKNESS AND SPACING BETWEEN VEHICLES/LOADS ON SEA ICE (for uncracked ice)

Minimum Ice		Short-Term			
Thickness	Parked on 9x9 Area ¹		With Resonant Wave		Load Separation ⁴
Feet	4 hours to 4 days	4 days to 4 months	Single load area ²	Multiple load area ³	Feet
1.5	Not reported	10,000 ⁵	10,000	Not reported	42
2	Not reported	15,000	18,000	25,000	54
2.5	27,000	17,000	25,000	30,000	64
3	43,000	27,000	40,000	50,000	72
4	88,000	56,000	70,000	80,000	90
5	156,000	92,000	Not reported	125,000	106
6	Not reported	131,000	Not reported	170,000	122
7	Not reported	178,000	Not reported	240,000	140

Adapted from Sandwell. 2001.

- (1) Near wet cracks, use half the weights indicated.
- (2) If these are intersecting wet cracks, suspend operations until cracks are repaired.
- (3) Use extreme care if weather is extremely cold after warm period or warm after cold period.

IMPORTANT NOTES:

(4) Control speed in shallow water to avoid flexural waves.

TABLE 5 -- VEHICLE SPEED ASSOCIATED WITH DYNAMIC EFFECTS ON SEA ICE

	Water	Depth
	10 Feet	40 Feet
Max. Speed (mph) for Dynamic Effect	12	24
Speed (mph) to Avoid Dynamic Effect	8	17

Adapted from Sandwell, 2001, Figure 3-1.

TECHNICAL LIMITATIONS

- · When working on ice, make sure the thickness is known.
- Be conservative in using the graphics in this tactic.

REFERENCES

Alaska Clean Seas. 1999. Alaska Clean Seas Technical Manual, Volume 1, Tactics Descriptions.

Alaska Clean Seas Winter Spill Operations - Module 1.

American Conference of Governmental Industrial Hygienists, Inc. 1994-1995. Threshold Limit Values, Chemical Substances and Physical Agents and Biological Exposure Indices.

Coastal Frontiers Corporation. 2001. Spring Break-Up Equipment Access Test Program, June 2001. For BP Exploration (Alaska) Inc. 21 pages.

Gold, L.W. 1971. Use of Ice Covers for Transportation. Canadian Geotechnical Journal. No. 8:170-181.

Sandwell Engineering Inc. 2001. Ice Access Guidelines for Spill Responders. For Alaska Clean Seas, Prudhoe Bay, AK.

Vaudrey, K.D. 1977. Ice Engineering - Study of Related Properties of Floating Sea Ice Sheets and Summary of Elastic and Viscoelastic Analyses. Navy Civil Engineering Lab. Technical Report R860.

¹ Sandwell, 2001, Tables 7-1 and 7-2.

² Sandwell, 2001, Figure 3-2

³ Sandwell, 2001, Figure 3-3

⁴ Sandwell, 2001, Table 3-8

⁵ Alaska Clean Seas. 1999. Tactic L-7, Table 4.

NORTH SLOPE MUTUAL AID

The North Slope Operators have signed an agreement to provide mutual aid for spill response in the event of a Level II or Level III spill. This agreement extends to both personnel and equipment. A brief description of North Slope spill levels is provided below.

SPILL LEVEL	CHARACTERIZATION
I	A small oil spill, the response to which can be provided by an Operator's and ACS' on-scene equipment and personnel, as determined by the field manager of the field in which the spill occurs.
II	A moderate oil spill, the response to which requires equipment or trained personnel located in other operating areas of the North Slope, or equipment or trained personnel of a Village Response Team, to supplement the Operator's and ACS' on-scene equipment and personnel, as determined by the field manager of the field in which the spill occurs.
III	A major oil spill, the response to which requires equipment or trained personnel to be brought to the North Slope to supplement the equipment and personnel located on the North Slope, as determined by the field manager of the field in which the spill occurs.

TERMS AND CONDITIONS OF MUTUAL AID

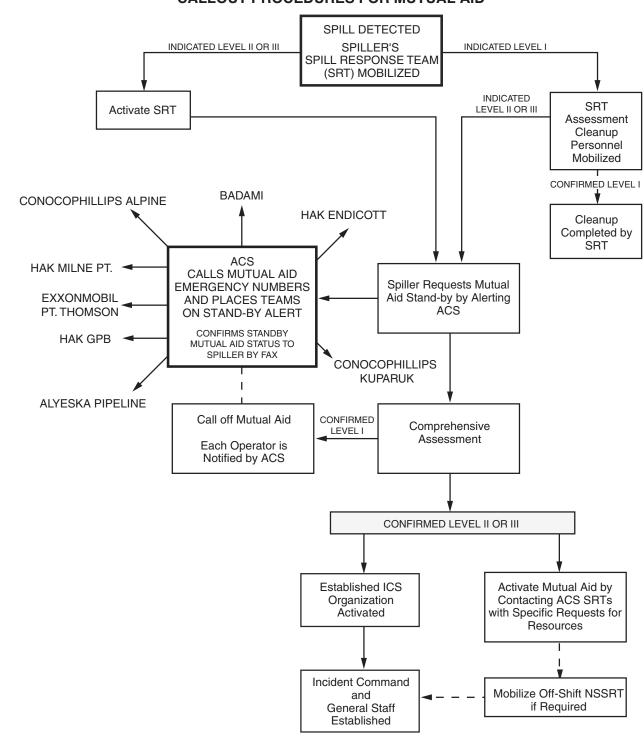
- 1. Providing Entity shall make available, at Receiving Entity's request, any North Slope Spill Response Team (NSSRT) personnel and dedicated spill response equipment to the extent such resources are:
 - · Deemed necessary and requested by Receiving Entity,
 - · In service, and
 - Not already committed to another spill response.

NSSRT personnel shall be provided until relieved by appropriately trained replacement personnel or until the response is completed. Personnel and equipment shall be utilized for spill response only and not for operation of production or transportation facilities.

- 2. Providing Entity may make available, at Receiving Entity's request, any additional response personnel and response equipment to the extent such resources are:
 - · Deemed necessary and requested by Receiving Entity,
 - In service,
 - Not already committed to another spill response, and
 - Not otherwise required for operation of the Providing Entity's operation.

Additional personnel shall be provided until relieved by appropriately trained replacement personnel or until the response is completed. Personnel and equipment shall be utilized for spill response only, and not for operation of production or transportation facilities.

- 3. All costs with the provision of manpower or equipment will be charged to the Receiving Entity.
- 4. In the event of a Level III callout, Providing Entity shall notify and mobilize off-shift NSSRT personnel at Receiving Entity's request.


North Slope Mutual Aid (Page 2 of 2) TACTIC L-8

RESPONSE EQUIPMENT

The spill response equipment that can be provided under this mutual aid comprises two categories: dedicated spill response equipment and heavy equipment that is utilized in day-to-day operations. See tactic on equipment.

CALLOUT PROCEDURES FOR MUTUAL AID

TACTIC L-9 Accessing Contract Resources (Page 1 of 1)

ACS has implemented a number of contractual agreements, including Master Service Agreements, with a range of contractors whose services may be required in a spill response. The agreements are:

- 1. Assignable to ACS member companies.
- 2. Valid until such time as one party cancels.
- 3. Comprised of three parts:
 - · Generic work scope
 - Compensation issues
 - General provisions (insurance/indemnification)
- 4. Specific work to be performed will be covered under a contract work authorization.
- 5. Contact point for implementation of ACS contractual agreements is:

Materials/Purchasing Specialist

Alaska Clean Seas

Deadhorse, AK

ACS CONTRACTUAL AGREEMENTS APPLICABLE FOR USE IN A SPILL RESPONSE

(current as of September 2014)

SERVICE CATEGORY	CONTRACTOR	PHONE	FAX
Casual Labor & Equipment/Spill Response	CCI, Inc.	(907) 258-5755	(907) 258-5766
Casual Labor & Equipment/Spill Response	Peak Oilfield Services	(907) 561-3200	(907) 562-5860
Casual Labor & Equipment/Spill Response	PENCO (Pacific Environmental Inc.)	(907) 562-5420	(907) 562-5426
Casual Labor & Equipment	G.B.R. Equipment Inc.	(907) 563-6500	(907) 563-0710
Communications Services	Alaska Communications Systems	(907) 563-8000	-
Communications Services	North Slope Telecom, Inc.	(907) 562-4693	(907) 562-0818
Environmental Engineering	S.L. Ross and Associates, Ltd.	(613) 232-1564	(613) 232-6660
IT Management and Technical Services	TekMate IT Outsource	(907) 561-6283	(877) 354-1449
Large Animal	Alaska Zoo	(907) 346-2133	(907) 346-2673
Legal Services	Delaney, Wiles, Attys. at Law (Steve Ellis)	(907) 257-0713	(907) 277-1331
Marine Wildlife Capture and Rehabilitation	Alaska Sealife Center	(907) 224-6317	(907) 224-6320
Mapping/GIS Support Services	Quantum Spatial	(907) 272-4495	(907) 274-3265
Mapping/GIS Support Services	F. Robert Bell & Associates	(907) 274-5257	(907) 272-7531
Marine Support Services	Crowley Alaska Inc.	(907) 278-4978	(907) 257-2828
Survival/Safety Training Services	LTR Systems, Inc.	(907) 563-4463	(907) 563-9185
Technical Support for ACS Tech Manual	ERM, Inc.	(907) 258-4880	(907) 258-4033
Wildlife Response Services	International Bird Rescue	(907) 230-2492	(907) 277-4956
Veterinary Services	The Pet Stop, LLC	(907) 522-1006	(907) 522-1848

THIS PAGE DELIBERATELY LEFT BLANK

CONTRACTOR CONTACT NUMBERS

ABBREVIATION	CONTRACTOR NAME	PHONE
AFC	Alaska Frontier Constructors	(907) 659-3090
ASRC	ASRC Energy Services	(907) 659-3820
AER	Airport Equipment Rental	(907) 659-2000
APSC	Alyeska Pipeline Service Company	(907) 450-4101
BRICE	Brice Incorporated	(907) 659-2330
WP	Worley Parsons	(907) 659-3341
CONAM	Conam Construction Company	(907) 659-3157
COP	ConocoPhillips	(907) 659-7949
CRUZ	Cruz Construction Inc	(907) 670-2506
DELTA	Delta Leasing	(907) 659-9056
NC	NC Machinery Company	(907) 659-9600
NES	Northern Energy Services	(907) 670-2800
PEAK	Peak Oilfield Service Company	(907) 659-2030
TANKCO	Tankco Alaska	(907)-659-3152

ACCESSING STATE OF ALASKA RESOURCES

State of Alaska resources may be made available in a spill response when a compelling need can be demonstrated, such as a greatly enhanced response. The State will consider the availability of private sector resources prior to committing equipment.

The point of contact for accessing state resources is the State On-Scene Coordinator (SOSC).

The spiller will be responsible for all costs associated with mobilization, activation and/or use of State of Alaska equipment.

ACCESSING FEDERAL GOVERNMENT RESOURCES

Federal resources may be made available in a spill response when a compelling need can be demonstrated, such as a greatly enhanced response. The Federal Government will consider the availability of private sector resources prior to committing equipment.

The point of contact for accessing federal resources is the Federal On-Scene Coordinator (FOSC).

The spiller will be responsible for all costs associated with mobilization, activation and/or use of federal government equipment.

ACCESSING RESOURCES FROM OTHER C-PLAN HOLDERS

The SOSC can authorize the release of response equipment from other facilities in Alaska operating under a state-approved contingency plan. On the North Slope, these facilities are located in the villages.

OIL SPILL RESPONSE COOPERATIVES

The Association of Petroleum Industry Co-op Managers (APICOM) has a mutual aid agreement to provide equipment and personnel to members on an as-available basis. Co-ops are under no obligation to provide resources. Resource availability may be restricted by either a co-op's member companies or regulatory obligations. A list of APICOM members is provided below.

APICOM MEMBERS

Cooperative	Location	Phone	Fax
Alaska Chadux Corp.	Anchorage, AK	(907) 348-2365	(907) 348-2230
Alaska Clean Seas	Prudhoe Bay, AK	(907) 659-3220	(907) 659-2616
Alyeska / SERVS	Valdez, AK	(907) 834-6902	(907) 834-6973
CISPRI	Nikiski, AK	(907) 776-5129	(907) 776-2190
Clean Channel Assn.	Pasadena, TX	(713) 534-6195	(713) 534-6197
Clean Gulf Associates	New Orleans, LA	(504) 799-3035	
Clean Rivers Cooperative, Inc.	Portland, OR	(503) 220-2087	(503) 295-3660
Corpus Christi Area Oil Spill Control Assn.	Corpus Christi, TX	(361) 885-6188	(361) 881-5162
Delaware Bay & River Coop., Inc.	Linwood, PA	(610) 859-2830	(610) 859-2834
Eastern Canada Response Corp.	Corunna, Ontario, Canada	(613) 230-7369	(613) 230-7344
Island's Oil Spill Association	Lopez Island, WA	(360) 468-3441	
MSRC	Everett, WA	(425) 304-1514	
Oil Spill Response Limited	Southampton, UK	+44 23 8033 1551	
Oil Spill Response Limited (former CCA)	Ft. Lauderdale, FL	(954) 983-9880	(954) 987-3001
Savannah Spill Response Corp.	Savannah, GA	(912) 429-3350	
SEAPRO	Ketchikan, AK	(907) 225-7002	(907) 247-1117
Western Canada Marine Response Corp.	Burnaby, BC, Canada	(604) 294-6001, x204	(604) 294-6003
Western Canada Spill Services Ltd.	Calgary, AB, Canada	(587) 393-9618	

^{*} Both CISPRI and SERVS maintain fishing vessel charter contracts for response in the event of a spill in their respective areas. Under contracts, vessel operators and deck hands are trained in spill response activities such as booming, skimming, and mini-barge operations. These vessels can be made available through either the APICOM mutual aid agreement or provisions in the specific fishing vessel contracts.

Alaska Department of Environmental Conservation regulations require that an oil discharge prevention and contingency plan must provide for the use of best available technology [18 AAC 75.425(e)(4)]. Each plan must identify technologies applicable to the operation that are not subject to response planning or performance standards specified in the regulations, include a written justification that the technology proposed to be used is the best available for the applicant's operation, and for each such technology identify all available technologies and include a written analysis of each technology,

The technologies that must be covered in the BAT analysis include, at a minimum:

- (i) for all contingency plans: communications described under 18 AAC 75.425(e)(1)(D); source control procedures to stop the discharge at its source and prevent its further spread described under 18 AAC 75.425(e)(1)(F)(i); trajectory analyses and forecasts described under 18 AAC 75.425(e)(1)(F)(iv); and wildlife capture, treatment, and release programs described under 18 AAC 75.425(e)(1)(F)(xi);
- (ii) for a terminal, a crude oil transmission pipeline, or an exploration and production contingency plan: cathodic protection or another approved corrosion control system if required by 18 AAC 75.065(h)(3); a leak detection system for each tank if required by 18 AAC 75.065(h)(4); any other prevention or control system approved by the department under 18 AAC 75.065(i)(1)(D); a means of immediately determining the liquid level of bulk storage tanks as specified in 18 AAC 75.065(j)(3) and (4); maintenance practices for buried steel piping containing oil as required by 18 AAC 75.080(b); protective wrapping or coating and cathodic protection if required by 18 AAC 75.080(b)(1)(A); and corrosion surveys required by 18 AAC 75.080(b)(2)(A);
- (iii) for a tank vessel contingency plan: measures to assure prompt detection of an oil discharge as required by 18 AAC 75.027(d); operation of a tank vessel under escort in a manner that permits an escort vessel to be available immediately to provide the intended assistance to the tank vessel as required by 18 AAC 75.027(e); tow lines as required by 18 AAC 75.027(f); and escort vessels;
- (iv) for a crude oil transmission pipeline contingency plan: leak detection, monitoring, and operating requirements for crude oil pipelines that include prompt leak detection as required by 18 AAC 75.055(a); and
- (v) for a barge contingency plan: measures to assure prompt detection of an oil discharge as required by 18 AAC 75.037(d) and means to recover a barge that breaks free of its towing vessel as required by 18 AAC 75.037(f);

The table on the next page shows the evaluation criteria that must be used for the alternative technology analysis. Following the table are the required BAT analyses for the ACS tactics/equipment that are used by ACS member companies:

- · Communications.
- Trajectory analyses and forecasts.
- Wildlife capture, treatment, and release programs.

BAT analysis to address the other technologies listed above must be provided in the oil discharge prevention and contingency plans for individual facilities.

SAMPLE BAT ANALYSIS TABLE

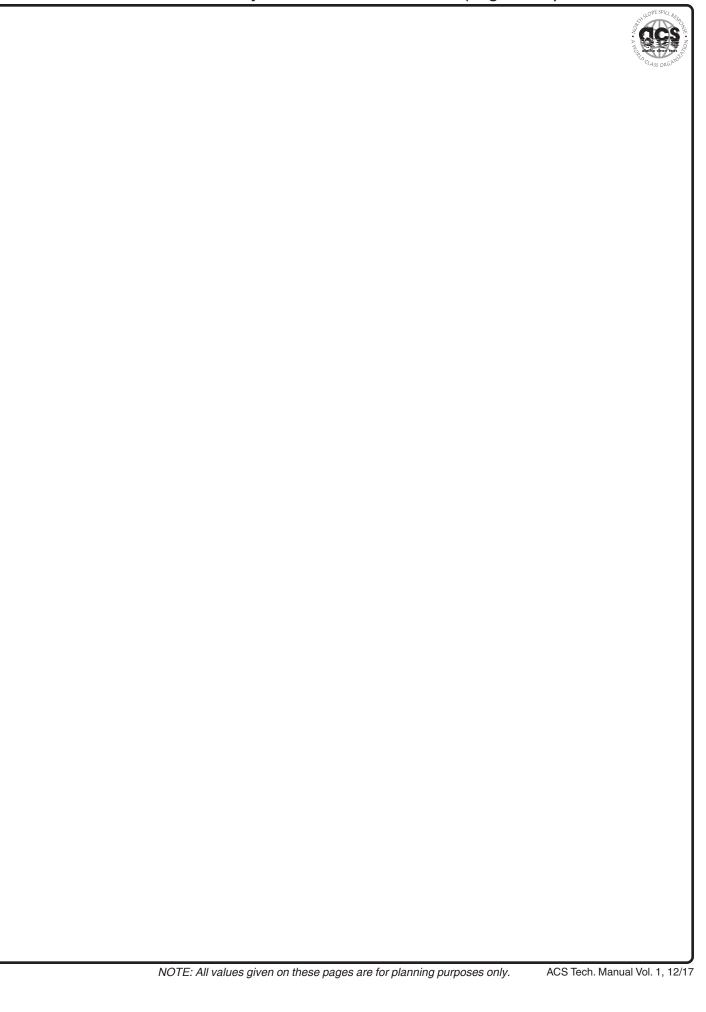
NOTE: The number of alternatives evaluated depends on the particular technology. In addition, the analysis table should be supplemented by a summary of the evaluation and the reasons for selecting the chosen technology.

BAT EVALUATION CRITERIA	SELECTED TECHNOLOGY	ALTERNATIVE 1	ALTERNATIVE X
AVAILABILITY: Whether technology is best in use in other similar situations or is available for use by applicant			
TRANSFERABILITY: Whether each technology is transferable to applicant's operations			
EFFECTIVENESS: Whether there is a reasonable expectation each technology will provide increased spill prevention or other environmental benefits			
COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant.			
AGE AND CONDITION: The age and condition of technology in use by the applicant			
COMPATIBILITY: Whether each technology is compatible with existing operations and technologies in use by the applicant			
FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects			
ENVIRONMENTAL IMPACTS: Whether other environmental impacts of each technology, such as air, land, water pollution, and energy requirements, offset any anticipated environmental benefits			

The ACS communications system incorporates most available communications technologies, including UHF and VHF portable and base radios, Inmarsat. The communications system includes separate logistics and operations networks to better control communications traffic. The ACS system is fully compatible with the systems maintained by all North Slope operators and thus provides the best way to assure maximum coordination of effort. The system also provides access to the worldwide telephone network for voice and data communications.

BEST AVAILABLE TECHNOLOGY ANALYSIS MOBILE RESPONSE COMMUNICATIONS (MRC) CENTER

BAT EVALUATION CRITERIA	CURRENT METHOD: ACS MRC	ALTERNATIVE: ON-SITE INSTALLATION
AVAILABILITY: Whether technology is best in use in other similar situations or is available for use by applicant	The ACS MRC is the model by which all other Mobile Response Centers on the North Slope have been built, and is BAT.	Equipment is available for on site installation, but installation/response time would be on the order of days rather than hours.
TRANSFERABILITY: Whether each technology is transferable to applicant's operations	No change.	Could be transferred.
EFFECTIVENESS: Whether there is a reasonable expectation each technology will provide increased spill prevention or other environmental benefits	No change.	No change.
COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant.	No change.	ACS has approximately \$500,000 invested in its MRC. Similar costs could be expected to install on site equivalent equipment.
AGE AND CONDITION: The age and condition of technology in use by the applicant	Current equipment ranges from 15-20 years old. Equipment is in excellent condition due to an aggressive preventive maintenance program, and will provide several more years of use.	N/A
COMPATIBILITY: Whether each technology is compatible with existing operations and technologies in use by the applicant	N/A	Compatible.
FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects	N/A	Feasible but costly, and unnecessary.
ENVIRONMENTAL IMPACTS: Whether other environmental impacts of each technology, such as air, land, water pollution, and energy requirements, offset any anticipated environmental benefits	No change.	The ACS MRC was engineered to use minimal power and has mated systems. Significant engineering would be required to provide the same benefits with current off-the-shelf equipment.


BEST AVAILABLE TECHNOLOGY ANALYSIS TECHNOLOGY: TWO WAY RF COMMUNICATIONS

BAT EVALUATION CRITERIA	CURRENT METHOD: VHF/UHF RADIO	ALTERNATIVE: VHF/UHF TRUNKING
AVAILABILITY: Whether technology is best in use in other similar situations or is available for use by applicant	VHF/UHF radio has proven itself BAT in the North Slope environment (taking terrain and topography into account).	Harmony systems are available, provide better penetration, but tend to be blocked under heavy load.
TRANSFERABILITY: Whether each technology is transferable to applicant's operations	No change.	Could be transferred.
EFFECTIVENESS: Whether there is a reasonable expectation each technology will provide increased spill prevention or other environmental benefits	No change.	Less effective in a spill response situation.
COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant.	No change.	Considerable at this time. ACS has several years use left in its current systems. Transferring to a trunking system would mean scrapping our current system, and a multi-million-dollar investment in Harmony equipment to provide coverage to the area currently covered.
AGE AND CONDITION: The age and condition of technology in use by the applicant	Current equipment ranges from new to 5 years old. Equipment is in excellent condition due to an aggressive preventive maintenance program, and will provide several more years of use.	N/A
COMPATIBILITY: Whether each technology is compatible with existing operations and technologies in use by the applicant	N/A	Not compatible with current ACS Remote Control System.
FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects	N/A	In order to provide coverage without blocking, many more repeaters would be necessary than are in use with The current equipment. This would be cost-prohibitive.
ENVIRONMENTAL IMPACTS: Whether other environmental impacts of each technology, such as air, land, water pollution, and energy requirements, offset any anticipated environmental benefits	No change.	More repeaters; greater power requirements.

BEST AVAILABLE TECHNOLOGY ANALYSIS SATELLITE/REMOTE COMMUNICATIONS

BAT EVALUATION CRITERIA	CURRENT METHOD:	ALTERNATIVE:
BAT EVALUATION CRITERIA	SATELLITE TELEPHONES	"KU" BAND EARTH STATION
AVAILABILITY: Whether technology is best in use in other similar situations or is available for use by applicant	Based on satellite look angles, satellite phones are more viable than "KU" band systems on the North Slope.	Less viable because of look angles.
TRANSFERABILITY: Whether each technology is transferable to applicant's operations	No change.	Could be transferred.
EFFECTIVENESS: Whether there is a reasonable expectation each technology will provide increased spill prevention or other environmental benefits	No change.	No change.
COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant.	No change.	Comparable to "C" systems.
AGE AND CONDITION: The age and condition of technology in use by the applicant	The ACS system is essentially new.	N/A
COMPATIBILITY: Whether each technology is compatible with existing operations and technologies in use by the applicant	N/A	Compatible.
FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects	N/A	Not feasible because of look angles.
ENVIRONMENTAL IMPACTS: Whether other environmental impacts of each technology, such as air, land, water pollution, and energy requirements, offset any anticipated environmental benefits	No change.	No change.

The regulations for contingency plan contents call for information on procedures and methods for real time surveillance and tracking of discharged oil on open water and forecasting of its expected points of shoreline contact [18 AAC 75.425(e) (1)(F)(iv)]. Discharge tracking may be conducted by aerial observation and trained observers. Video and still images from aerial observation overflights are sent to the Incident Command Post (ICP) for dissemination. Satellite tracking buoys and ice beacons can be deployed and followed in near-real time over a network connection in the ICP. Tracking and surveillance may include using manned and unmanned aircraft with visual and infrared cameras (Tactic T-4), tracking buoys deployed in the water or on ice (Tactic T-4A), and trained responders on the surface. Responders on the ground conduct delineation (Tactic T-1) to find the oiled areas and mark them with lathe and flagging and GPS waypoints, which can be mapped and monitored for any changes due to weather, blowing snow, freeze-up, or breakup conditions.

Trajectory analysis is applicable to forecast oil spill movement on water rather than winter spills to frozen surfaces. Oil falling to snow-covered ground and sea ice is absorbed by the snow and does not move. For spills to water, simple vector calculations may be conducted using wind speed and currents at the time. Computer-based trajectory models, such as the NOAA GNOME (General NOAA Operational Modeling Environment) Suite can predict the fate and transport of oil spilled in water. Computer models may be less effective for the nearshore environment, and are not usable in rivers or ice-infested waters at this time.

BEST AVAILABLE TECHNOLOGY ANALYSIS DISCHARGE TRACKING

BAT EVALUATION CRITERIA	CURRENT METHOD: AERIAL / VESSEL (VISUAL AND INFRARED)	CURRENT METHOD: TRACKING BUOYS	CURRENT METHOD: UNMANNED AIRCRAFT SYSTEMS	ALTERNATIVE 1: SYNTHETIC APETURE RADAR
AVAILABILITY: Whether technology is best in use in other similar situations or is available for use by applicant	Aircraft are maintained at the North Slope operating areas for routine uses, cargo and personnel transfer and aerial surveillance. Vessels are available at ACS Base, West	Currently available and in use by ACS. Buoys are stored at several locations on the North Slope to allow for rapid depolyment. Buoys are used in training and exercises to ensure responders and field leaders are familiar with employing them.	Currently available and in use by ACS. Small Unmanned Aircraft System (UAS) use has been incorporated into every aspect of ACS field operations. Deployment from road- accessible areas as well as launching from vessels has been performed numerous times in training, exercises and actual spill and inspection events.	Synthetic Apeture Data available to researchers and users familiar with SAR, Possibly could be requested through NOAA OR&R for display on Arctic ERMA.
TRANSFERABILITY: Whether each technology is transferable to applicant's operations	Currently in use. Aircraft can be dedicated to spill response if needed. Vessels are available for spill response operations at all times during open water season.	Currently in use by ACS.	Currently in use by ACS. Current systems are being maintained, updated and improved by ACS.	Transferable technology; SAR has been proven to detect oil on water, restricted to lower loe concentrations to detect effectively. Specialized users from research community not immediately available. Data can be downloaded from NSF and NASA-sponsored Supersites with proper access permission.
EFFECTIVENESS: Whether there is a reasonable expectation	Trained and experienced observers are highly effective for tracking and reporting on	Effectiveness has been demonstrated during exercises at the North Slope and in actual	Highly effective in all aspects of spill prevention and response. UAS has proven to	SAR has been proven for many years to be effective at detecting oil on open ocean and
each technology will provide increased spill prevention or other environmental benefits	oil. FLIR capability can enhance this effectiveness under certain conditions. Consideration must be given to safely deconflicing, aircraft operations over spill areas to maintain effectiveness and safety. Weather and environmental conditions can limit availability and use.	spills around the country and world. Bluoys can provide situational awareness of oil location particularly in conditions which preclude visual observation. Modification to combine Ice Beacon hull structure with Sphere drifter buoy increased their effectiveness to make them deployable year round. Additional modifications being developed for shallow water (river) drifter buoy hull shape.	enhance and imrove spill prevention methods through inspection use and increased situational awareness. Enable inspection of impacted or potentially impacted sensitive environmental areas without risking damage through vehicle access. Enables inspection and non-emergency access of fundra areas when fundra travel is closed to vehicles. Provides tactical field leaders to more efficiently direct cleanup assets and evaluate protective booming configurations.	coastal areas. Effective over large remote areas where aixorfal and surface vessels would have more difficulty surveying. Not affected by fog, cloud cover or darkness. Sea state limits the ability for radar to image floating oil. Statellite detection of oil spills is most effective in lower ice concentrations. No effective in lower ice concentrations. No effective is subsh and frazil ice, and in higher ice concentrations above 3/10 coverage.
COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant.	Existing aircraft and vessel assets already in use. No additional cost. Specialized sensor-equipped aircraft are available for out of area at considerable cost.	Relatively low cost to purchase. Items already in ACS inventory. Price and details of nogoing subscription enables activation statuss to be managed by ACS, making buoys available for training, exercises and actual events. Combining iSphere Drifter with los Beacon structure cost savings over maintaining two separate types of buoys. Modifications performed in-house at ACS.	Cost for small, short-range UAS is relatively low, compared to manned aircraft, but larger, long-range aircraft are very expensive. Current sUAS inventory requires nominal additional costs for batteries and consumable parts and should last for years. Existing cameras and sensors provide ultrahigh definition video and digital photography. Additional aircraft or sensors would add cost depending on capabilities. Cost to train and license pilots and maintain pilot currency are low.	High cost of systems and deployment. Requires satellite or aircraft and highly trained personnel.
AGE AND CONDITION: The age and condition of technology in use by the applicant	Aircraft and vessel assets in operable and satisfactory condition. Aircraft are inspected and maintain airworthiness as required by the FAA. Vessels are maintained as part of ACS readiness. Older vessels are on a multi-year replacement program, based on condition.	Buoys in inventory are new, recent purchess with up-to-date software. Innovative in-house upgrade combined lee Beacon's protective structure (Tactic T-4A) with new satellite tracking drift buoys (Tactic T-4)	Current fleet in ACS inventory are within three years since purchase and have low flight hours on the aircraft. They are regularly maintained and fall under a hardware, firmware, software and battery maintenance tracking program.	Not applicable.
COMPATIBILITY: Whether each technology is compatible with existing operations and technologies in use by the applicant	Compatible with current ACS operations. Aircraft currently used in normal operations.	Compatible with current ACS operations. Requires internet access to track, which has been demonstrated successfully from remote command posts and underway in recovery vessels during training.	Currently in use by ACS. UAS operations have been incorporated into all aspects of ACS field operations.	Compatible.
FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects	Currenly in use in routine and non-routine operations.	Buoys have been successfully demonstrated for years in spill response throughout the country and world. Routinely used in Arctic scientific research cruises. Active, integral part of training and Mutual Aid Deployment Exercises.	UAS have been successfully used by ACS in all areas at the North Slope. ACS has obtained waivers and Certificates of Authorization for flight within controlled airspace and at hight (critical for year round operations at the North Slope).	Feasible but costly given availability and effectiveness of existing systems.
ENVIRONMENTAL IMPACTS: Whether other environmental impacts of each technology, such as air, land, water pollution, and energy requirements, offset any anticipated environmental benefits	Potential negative environmental impacts could arise from flueling and from incidents while in operation. Potential wildlife impacts from vessels and aircraft. Crews in both cases maintain vigilance for potential wildlife interactions.	No negative environmental impacts. Buoy hulls are sealed and batteries are protected. Buoys are maintained annually and checked for proper condition before deploying. Positive environmental benefit of potential advance warning during a spill of floating oil making landfall.	Minimal potential for negative environmental impacts. Aircraft batteries are sealed and are non-liquid LIPO batteries. Potential for wildlife impact is mitigated by use of Visual Observer and hightened awareness of personnel. Positive environmental benefits of situational awareness and inspection without traveling on sensitive areas far outweighs risk of potential impacts.	None noted:

BEST AVAILABLE TECHNOLOGY ANALYSIS TRAJECTORY ANALYSIS

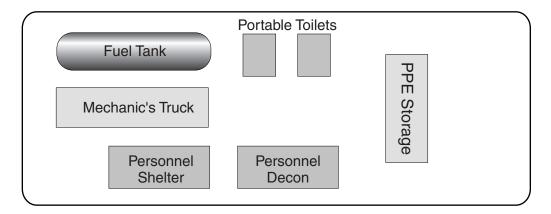
AVAILABILITY: The NOAA Office of Restoration and Response staff provides a verbal trajectory forecast within 1/2 to 1 hour of notification. A model run is available within 2 to 3 hours. NOAA's staff is always available. The GNOME (General NOAA Operational Modeling Environment) Suite is a set of modeling tools for predicting the fate and transport of pollutants (such as oil) spilled in water. The OILMAP software can be purchased for use by anyone and runs on Windows. Use limited by the number of licenses purchased for use by anyone and runs on Windows. Use limited by the number of licenses purchased for water current and wind vector data. This approach assumes that wind pushes oil at 3% of wind speed, and wind pushes oil at	BAT EVALUATION CRITERIA	CURRENT METHOD:	ALTERNATIVE:	ALTERNATIVE:
Womeher technology is best in use in other similar situations or is available for use by applicant in Section of the properties of the pro	AVAII ADII ITV	NOAA GNOME	HAND CALCULATIONS	OILMAP
similar stations or is available for use by applicant. Orocast within 12 to a hour of norification, A model run is available within 12 to 1 hour of norification, A model run is available within 12 to 1 hour of norification, A model run is available within 12 to 1 hour of norification and NOAH's staff is always available the GNOME (General NACO Agreement Staffe is a six of modeling tools and controlling tools are used for NOAH's spill response, and only aligh planning communities, model of as discrete particle sinkle with 12 to 1 hour of norification with the results of computer with the controlling sold as discrete particle sinkle with 12 to 1 hour of norification with the results of computer with the controlling with the proposed of the primary spill and sold sold sold sold sold sold sold sol				1
Amoded not not available within 2 to 3 hours. MoAAS staff is always available. The filter of the common staff of the common st	_ =:			I Total
NOAM's start is always available. The GNOME (General NAAA Operational Modeling Environment) state is a set of modeling tools rore decirately the the and transport of prodicts to the the and transport of pollutants found as oil spilled in water. The emodeling tools are used for NAAA or NAAAA or NAAAA or NAAAA or NAAAA or NAAAA or NAAAAAAAAAA	· ·	-		1
Environment) suite is a set of modeling tools for predicting the face and transport of pollutants such as oill spilled in water. These modeling tools are used for NAA's spill response support and rea also publicly waitable for use by the transfer acids are spilled. The spilled in the spille		NOAA's staff is always available. The GNOME	I	OILMAP is widely used and accepted by the
for predicting the fate and trasport of pollutants (usun as oll) spilled in water from the modeling tools are used for NDAA's spill response used on all planning common to the exposure, and on all pollutants (usun as oll) planning common to the exposure, and on all planning common to the exposure that common the exposu		(General NOAA Operational Modeling	calculations performed on scene may	oil industry, and hindcast analysis has been
aclalations are alikely to be used in minited. For example, these modeling tools are used for NAS- spill response support and are also publicly available for use the provised area and so publicly available for use by the broader active by the provider active by the provider active by the provider active by the provider active by wind and water speed and injection (is obera) with a special and a special provised and provised and a special provised and provised and a special provised and provi			provide the primary trajectory forecasting	
These modeling tools are used for NDAA's spill response sport and are also published from the spill response, and on spill planning communities, modeling, and the spill planning communities, modeling p		for predicting the fate and transport of	available during the initial response. The	effectiveness. Access to some data may be
spill response support and are also publicly available for our by the broader accentic, responses, and oil spill planning communities, models oil as discrete particles affected by wind and water speed and direction (is a does all such software), input information includes time, location, and quantity of spill. Advantages: **NOAA the the source of most meteorological data imput into any modeling software. **NOAM sites source of most meteorological data imput into any modeling software. **NOAM corpus graphics are compatible with Actic EDMA Reference and the chronology is transferrable. **TRANSFERABILITY:** Whether each technology is transferable to applicant or other environmental benefits and dispicts, spill equipment can be moved beforehand to protect sensitive and movement will be obtained be formation downwent will be obtained be formation and movement will be obtained be formation or other environmental benefits from the control or provide increases size, spill equipment can be moved beforehand to protect sensitive analyses and movement will be obtained benefits for the control or other environmental benefits and the control or other environmental benefits		pollutants (such as oil) spilled in water.	calculations are likely to be used in	limited. For example, although
available for use by the broader academic, response, and to spill plianing communities, model are previously calculated by ASA for response, and to spill plianing communities, models of as discrete particles affected by wind and water speed and direction (is as does all such software). Input information includes time, location, and quantity of spill. Advantages: **WORA to the source of most meteorological data input into any modeling software. **WORA to the source of most meteorological data input into any modeling software. **WORA data and depicts these using uncertainty bounds. **Whether each technology is brander and uncertainty data and uncertainty data. **WORA data and depicts the data and uncertainty data. **WORA data and depicts the data and uncertainty data. **WORA data and depicts the data. **WORA data and depicts the data and uncertainty data. **WORA data and depicts the data. **WORA data and data and depicts present and uncertainty data. **WORA data and data and depicts present and uncertainty data. **WORA data and data and depicts present and uncertainty data. **WORA data and data and depicts present and uncertainty data. **WORA data and data and depicts present and uncertainty data. **WORA data and da			I -	meteorological data can be obtained from
response, and oil spill planning communities, models oil as discrete particles affected by wind and water speed and direction (as does all such software), input information includes time, location, and quantity of spill. Advantages: - NOAM, the source of most meteorological data input into any modeling software NOAM understands the limitations of the data and depicts these using uncertainty with the spill of the data and depicts these using uncertainty with the substance of most meteorological data input into any modeling software NOAM corpts graphics are compatible with Arcit cEMAR flerommental Response Management Application which is the standard Common Operating Picture tool. TRANSERABILITY. Whether each technology is transferable to applicant's operations. FEFCTUNENSS: NOAA provides new forecasts daily during spill provention or other environmental benefits direction changes, spill equipment can be moved beforehand to protect sensitive areas. NOAA and overside increase and movement will be obtained through adid never the control of the con			modeling.	
modes oil as discrete particles affected by wind and water speed and direction fas does all such software). Input information includes time, location, and quantity of spill. Advantages: - NOAA understands the limitations of the data and depicts these using uncertainty bounds. - KNOAM control of the data and depicts these using uncertainty bounds. - GNOME output graphics are compatible with Arctic EMAI (Environmental Response Management Application) which is the standard Common Operating Picture tool. First PETCITIVINES: - Whether each technology is transferable to applicant's operations expected on the provides new forecasts daily during gain prevention or other environmental benefits on the provides new forecasts daily during gain prevention or other environmental benefits on the provides of the provides of the service. - Whether there is a reasonable expectation expects the provides of the				
wind and water speed and direction (as does all such software). Input information includes time, location, and quantity of spill. Advantages: • NOAA is the source of most meteorological data input into any modeling software. • NOAA understands the limitations of the data and deglicits these using uncertainty bounds. • GROME output graphics are compatible with Arctic ERMA (Environmental Response Management Application) within the standard Common Operating Picture tool. **TRANSFERABILITY:** Whether each technology is transferable to applicant's operations. EFFECTIVENESS: **NOAA show onks directly with the U.S. Coast Guard of some efforts. Updated data on spill (castion and movement will be obtained through radio reports from aerial observers, infrared aerial wideotopes, and from tracking buys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. **OCOST:** **TRANSFERABILITY:** **Whether each technology is use by the applicant of achieving BAT. Including consideration of that cost relative to the remaining wars of sevice of the technology is use by the applicant of achieving BAT. AGA AND CONDITION: **The cost to the applicant of achieving BAT. AGA AND CONDITION: **The aga and condition of sechnology is use by the applicant of the cost relative to the remaining wars of sevice of the technology of the applicant of the cost relative to the remaining wars of sevice of the technology is good provided in the NOAA and the ArcSiG-Based massing paga pagications for Common Operating Picture. **OCOMPATRISITY:** **Whether each technology is compatible with existing operations and technologies in use by the applicant of achieving BAT. Already in use. **PECTIVENESS:** **NOAA Service of the technology is ompatible with existing operations and exchange with changes to procedures and equipment. Requires training personnel. **PECTIVENESS:** **NOAA Service of the technology is compatible with existing operations and exchange with changes to				NOAA data.
all such software]. Input information includes time, location, and quantity of spill. Advantages: - NOAA is the source of most meteorological data input into any modeling software NOAA understands the limitations of the data and depicts these using uncertainty bounds GNOME output graphics are compatible with Arctic EBMA (Environmental Response Management Application) which is the standard common Operating Picture tool. FRANSFERABILITY: Whether each schnology is transferable to applicant's operations FRETCITIVINESS: Whether there is a neasonable expectation of the standard common Operating Picture to applicant's operations of other environmental benefits Workload of the standard common operating Picture to applicant or other environmental benefits Workload of the standard common operating Picture and the standard common operating Picture. Whether each schnology is used to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the termology is use by the applicant. AGE AND CONDITION: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use to the termology and applications and technologies in use by the applicant. AGE AND CONDITION: The age and condition of technology in use with Applications of the technology is use by the application. AGE AND CONDITION: The age and condition of technology in use with Applications of the technology in the proper conducts and equipments. Beginners and technologies in use by the application of that cost relative to the technology in the proper		T		
includes time, location, and quantity of spill. Advantages* • NOAA is the source of most meteorological data input into any modeling software. • NOAA undestands the limitations of the data and deplicits these using uncertainty bounds. • GROME output graphics are compatible with Arctic ERMA [Environmental Response Management Application) which is the standard Common Operating Picture tool. TRANSFERABILITY: Whether each technology is transferable to applicant's operations EFFECTIVINESS: NOAA provides new forecasts daily during spill responses. Thus, if wind or current direction changes, spill equipment can be moved beforehand to protect sensitive areas. NOAA also works directly with the U.S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through radio reports from aerial observers, infrared aerial videotopes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, moduling consideration of that cost reported in the NOAA model to provide more accurate model results. No cost for this service. No cost. Site and software licenses required. Whether each technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant of achieving BAT. MOAA. AGE AND CONDITION: The age and condition of technology in use by the applicant of the contractive of the technology is use by the applicant. PEASIBILITY: MAA Already in use. Whether each technology is compatible with easing operations and technologies in use by the applicant of achieving BAT and the proposed in the NOAD and the NO				
Advantages: NOAA that is the source of most meteorological data input into any modeling software. NOAA understands the limitations of the data and depicts these using uncertainty bounds. NOAM context and the incommental Response Management Application which is the standard Common Operating Picture tool. ITAMNSFRABILITY: Whether each technology is transferable to applicant's operations. FFEFCTUNINES: Whether there is a reasonable expectation each technology is male provide increase and increase and training for users. NOAA provides new forecasts daily during spill response. Thus, if wind or current a direction changes, spill equipment can be moved beforehand to protect sensitive areas. NOAA also works directly with the U.S. Coast Guard to support response efforts. Undated education and movement will be obtained through radio reports from aerial observers, infrared aerial videctapes, and from tracking busys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. NOAC ST. No cost for this service. No cost. No cost for this service. No cost. Site and software licenses required. No cost for this service. Site and software licenses required. Compatible with existing operations and technology is compatible with operations. Compatible with existing operations and technology is properly of the papilicant of activities of the control of the cost of the technology is compatible with existing operations and technology is compatible with existing operations and technologies with changes to procedures and equipment. Use of the technology requires training personnel. Picture: N/A. Already in use. N/A. Already in use. N/A. N/A. N/A. N/A. N/A. N/A. N/A. N/A.				
NOAA is the source of most meteorological data input tim any modeling software. NOAD understands the limitations of the data and deplots these using uncertainty bounds. NOAM coutput graphics are compatible with Arctic ERMA (Environmental Response Management Application) which is the standard Common Operating Picture tool. TRANSERABILITY: Whether each technology is transferable to applicant's operations. PTE-CTEVENESS: NOAA provides new forecasts daily during spill response. Thus, if wind or current addition or other environmental benefits of the provides				
data injust into any modeling software. * NOAM control strands the limitations of the data and depicts these using uncertainty bounds. * RANSERABILITY: TRANSERABILITY: NOAA provides new forecasts daily during spill expose. Thus, if wind or current direction changes, spill equipment can be moved beforehand to protect sensitive areas. NOAA also works directly with the U.S. Coast Guart to support response efforts. Updated data on spill location and movement will be obtained through adio resports from aerial lobservers, infrared aerial videotapes, and from tracking bubys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. **NOAA also works directly with the U.S. Coast Guart on spill location and movement will be obtained through radio resports from aerial lobservers, infrared aerial videotapes, and from tracking bubys such as those used in the Orion system. These data can be incorporated in the NOA model to provide more accurate model results. **NOAA model to provide more accurate model results. **NOAA.** NOAA.** **NOAA.** **NOAA.** **NOAA.** **NOAA.** **NOAA.** **NOAA.** **NOAA.** **NOAA.** **NOAA.** **NOAA.* **NOAA.** **NOAA.* **NOAA.*		=		
data and depicts these using uncertainty boundsGNOMS output graphics are compatible with Artic ERMA Environmental Response Management Application) which is the standard Common Operating Picture tool. TRANSFERABILITY: Whether each technology is transferable to applicant's operations EFFECTIVENESS: NOAD provides new forecasts daily during split esponse. Thus, if wind or current direction changes, spill equipment can be more renvironmental benefits are assonable expectation each technology will provide increased spill prevention or other environmental benefits are successfully during split esponse. Thus, if wind or current direction changes, spill equipment can be more renvironmental benefits and the company of the provides of the control of the provide with existing operations and movement will be obtained through radio reports from aerial observers, infrared aerial videotapes, and from tracking Buory such as those used in the Orion system. These data can be incorporated in the MOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. COMPATIBILITY: No cost for this service. No cost. Site and software licenses required. Transferrable. Transferrable. Transferrable with procedural changes, licensing and training for users. Ilicensing and training for users. Ilicensing and training for users. Transferrable. Transferrable. Transferrable. Transferrable. Transferrable. Transferrable with procedural changes. licensing and training for users. Ilicensing and training for users. Transferrable. Transferrabl				
boundsGNOME output graphics are compatible with Arctic ERMA [Environmental Response Management Application) which is the standard Common Operating Picture tool. FIRANSFERABILITY: Whether each technology is transferable to applicant's operations FEFECTIVENESS: REFECTIVENESS: NOAD provides new forecasts daily during spill response. Thus, if wind or current dender therhology will provide increased still grow changes, spill eugenent can be moved beforehand to protect sensitive areas. NoADA also works directly with the U.S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through raid or reports from arial observes, infarred aerial videotapes, and from tracking buory such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: AGE AND CONDITION: Whether each technology in use by the applicant. AGE AND CONDITION: Whether each technology is use by the applicant of achieving partial with provide more accurate model are kept up to date by the applicant of the provide more accurate model are kept up to date by the applicant of the provide more accurate model are kept up to date by the age and condition of technology in use by the applicant of the provide more accurate model are kept up to date by the applicant of the provide more accurate model are kept up to date by the age and condition of technology in use by the applicant of the provide more accurate model are kept up to date by the applicant of the provide more accurate model are kept up to date by the age and condition of technology in use by the applicant of the provide more accurate model are kept up to date by the applicant of the provide more accurate model are kept up to date by the applicant of the provide more accurate model are kept up to date		NOAA understands the limitations of the		
- GNOME output graphics are compatible with Arctic ERMA (Environmental Response Management Application) which is the standard Common Operating Picture tool. TRANSFERABILITY: Whether each technology is transferable to applicant's operations EFFECTIVENESS: NOADA provides new forecasts daily during spire vention or other environmental benefits movement will be obtained through radio reports from aerial benefits will decrease and in the provided data on spill location and movement will be obtained through radio reports from aerial benefits on the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: AGE AND CONDITION: COMPATIBILITY: Whether each technology is use by the applicant. AGE AND CONDITION: More age and condition of technology in use by the applicant of achieving applications of the compatible with existing operations and technologies in use by the applicant of achieving applications of the compatible with existing operations and technologies in use by the applicant of achieving applications for Common Operating required. AGE AND CONDITION: COMPATIBILITY: Whether each technology is compatible with existing operations and technologies in use by the applicant of achieving applications for Common Operating required. AND		data and depicts these using uncertainty		
with Arctic EBM, (Environmental Response Management Application) which is the standard Common Operating Picture tool. Entirely transferrable. Entirely transferrable. Entirely transferrable. Transferrable with procedural changes, licensing and training for users. NOAA provides new forecasts daily during spill response. Thus, if wind or current direct technology will provide increased spill prevention or other environmental benefits ANOAA provides new forecasts daily during spill response. Thus, if wind or current direct technology will provide increased spill prevention or other environmental benefits ANOAA provides new forecasts daily during spill response. Thus, if wind or current direct technology is will provide increased spill prevention or other environmental benefits ANOAA slow owsk affectly with the U. S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through radio reports from aerial obsevers, infarred aerial videotapes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant. AGE AND CONDITION: Whether each technology is compatible with whether other each technology is compatible with operations. Compatible with existing operations and technologies in use by the applicant. AGE AND CONDITION: Whether each technology is compatible with existing applications for Common Operating Picture. Compatible with operations and etchnologies with changes to procedures and equipment. Use of the technology requires training personnel. PEASIBILITY: Whether each technology is application of the compational applications of the chronicogy in the practical feasibility of each technology in use. N/A Already		bounds.		
Management Application which is the standard Common Operating Picture tool.				
Standard Common Operating Picture tool.		,		
TRANSFERABILITY: Whether each technology is transferable to applicant's operations FIFECTIVENESS: Whether there is a reasonable expectation each technology will provide increased spill prevention or other environmental benefits are successfully described by the applicant of achieving BAT, including consideration of the applicant of achieving BAT, including consideration of the experiments of the technology is use by the applicant. COST: The cost to the applicant of achieving BAT, including consideration of the control of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant. COMPATIBILITY: Whether each technology is compatible with existing operations and technologies in use by the applicant. COMPATIBILITY: Whether other each technology in compatible with existing operations and technologies in use by the applicant. PEASIBILITY: NA Already in use. NI/A NI/A				
Mether cach technology is transferable to applicant's operations EFFECTIVENESS: Whether there is a reasonable expectation each technology will provide increased spill prevention or other environmental benefits are as NOAA sit owns directly with the U.S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through radio reports from aerial observers, infrared aerial videotages, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant. COMPATIBILITY: Whether each technology is compatible with existing operations and technologies in use by the applicant. PEASIBILITY: NAA Ineady in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the technology in use. Whether of the renvironmental impacts of the renvironmental impacts of the renvironmental impacts of the renvironmental impacts of the procedure and the procedural revisions to implement, but would require reconstru				
applicant's operations EFECTIVENES: Whether there is a reasonable expectation each technology will provide increased spill provide increased spill provide increased spill response. Thus, if wind or current direction changes, spill equipment can be provention or other environmental benefits For a spill response. Thus, if wind or current direction changes, spill equipment can be moved beforehand to protect sensitive areas. NDAA also works directly with the U.S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through radio reports from aerial observers, infrared aerial videotages, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NDAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether each technologies in use by the applicant COMPATIBILITY: MyA. Already in use. N/A. N/A N/A N/A N/A N/A N/A N/A N/A		Entirely transferrable.	Entirely transferrable.	
Whether there is a reasonable expectation ach technology will provide increased spill prevention or other environmental benefits are sach NOAA also works directly with the U.S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through radio reports from aerial observers, infrared aerial videotages, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: COMPATIBILITY: COMPATIBILITY: COMPATIBILITY: COMPATIBILITY: COMPATIBILITY: Compatible with operations. Compatible with existing operations and technologies in use by the applicant COMPATIBILITY: With Actic ERMA and other ArcGiS-based mapping applications for Common Operating by the applicant PEASIBILITY: N/A. Already in use. N/A. N/A N/A N/A N/A N/A N/A N/A N/A				licensing and training for users.
Whether there is a reasonable expectation each technology will provide increased spill prevention or other environmental benefits prevention or other environmental benefits areas. NOAA also works directly with the U.S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through radio reports from aerial observers, infrared aerial videotapes, and from tracking buoys such as those used in the Ortion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant (COMPATIBILITY: Whether other can be incorporated in the NOAA model to provide more accurate model results. Current models are kept up to date by NOAA. Compatible with operations. Compatible with operations and technology is use by the applicant with Arctic ERMA and other ArcGis-based mapping applications for Common Operating by the applicant Picture. N/A. Already in use. N/A. N/A N/A N/A N/A N/A N/A N/A N/A		NOAA provides new forecasts daily during		
each technology will provide increased spill direction changes, spill equipment can be moved beforehand to protect sensitive areas. NOAA also works directly with the U.S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through radio reports from aerial observers, infrared aerial videotapes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: AGE AND CONDITION: NOAA. COMPATIBILITY: COMPATIBILITY: The practical feasibility of each technology in use by the applicant ONAA already in use. N/A Already in use. N/A Already in use. N/A Already in use. N/A N/A N/A N/A N/A N/A N/A N/A		, , ,		
moved beforehand to protect sensitive areas. NOAA also works directly with the U.S. Coast Guard to support response efforts. Updated data on spill location and movement will be obtained through radio reports from aerial observers, infrared aerial videotapes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. No cost. No cost. Site and software licenses required. Site and software licenses required. No cost. Site and software licenses required. When the reach contrology in use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether other each technology in sue so by the applicant No Compatible with operations. Compatible with existing operations and technologies in use by the applicant No Compatible with operations for Common Operating applications for Common Operating and equipment. Requires training personnel. Picture. No A. Already in use. No Compatible with operations to implement, but would require procedural revisions to implement, but would require on changes. No A. No No No Cost. No cost. Site and software licenses required. Site and software licenses required. One cost. Site and software licenses required. Site and software licenses required. One cost. Site and software licenses required. One				
COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant COMPATIBILITY: The age and condition of technologies in use by the applicant Whether other each technologies in use with Acric ERMA and other ArcGIS-based existing operations and technologies in use by the applicant NA. Already in use. CAIST: No cost for this service. No cost. No cost. No cost. Site and software licenses required. Site and software licenses required. Whether other each technology is compatible with existing operations and technologies in use by the applicant Compatible with operations. Compatible with existing operations and technologies in use by the applicant NA. Already in use. NA. Already in us				
Updated data on spill location and movement will be obtained through radio reports from aerial observers, infrared aerial videotapes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. No cost. Site and software licenses required. Site and software licenses required. Site and software licenses required. Outprovide more accurate model results. No cost. Site and software licenses required. Outprovide more accurate model results. No cost. Site and software licenses required. Site and software licenses required. On more sequired. Site and software licenses required. Site and software licenses required. Compatible with software licenses required. On more sequired. Site and software licenses required. Software licenses required. Site and software licenses required. Site and software licenses required. Software licenses required. Site and software licenses required. Site and software licenses required. Software licenses required. Site and software licenses required. Site and software licenses required. Software licenses required. Site and software licenses required. Site and software licenses required. Software l		areas. NOAA also works directly with the U.S.		
movement will be obtained through radio reports from aerial observers, infrared aerial videotapes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST:		Coast Guard to support response efforts.		
reports from aerial observers, infrared aerial videotapes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. No cost No cost No cost No cost Site and software licenses required. Whether other each technology in use by the applicant COMPATIBILITY: The gas and condition of technologies in use by the applicant Compatible with operations. Compatible with with Arctic ERMA and other ArcGif-based mapping applications for Common Operating by the applicant No cost. No cost. Site and software licenses required. Whether other each technology is use by the applicant. Compatible with operations. Compatible with existing operations and technologies with changes to procedures and equipment. Requires training personnel. FEASIBILITY: No cost. Site and software licenses required. Compatible with existing operations and technologies in use and equipment. Requires training personnel. PEASIBILITY: No cost. Site and software licenses required. Compatible with existing operations and technologies with changes to procedures and equipment. Requires training personnel. PEASIBILITY: No cost. Site and software licenses required. Compatible with existing operations and technologies with changes to procedures and equipment. Requires training personnel. PEASIBILITY: No cost. Site and software licenses required. Compatible with existing operations and technologies with changes to procedures and equipment. Requires training personnel. PEASIBILITY: No cost. Site and software licenses required.		Updated data on spill location and		
videotapes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Compatible with operations. Compatible with existing operations and technologies in use by the applicant COMPATIBILITY: The paratical feasibility of each technology in terms of engineering and other operational aspects N/A Already in use. Videotapes, and from tracking buoys such as those used in the Orion system. These data can be incorporated in the NOAA model to provide more accurate model results. No cost. Site and software licenses required. Unknown frequesncy of data updates. N/A Unknown frequesncy of data updates. Compatible with existing operations and technologies with changes to procedures and equipment. Requires training personnel. The practical feasibility of each technology in terms of engineering and other operational aspects N/A Already in use. Used successfully by spill responders throughout the U.S. No procedural revisions to implement, but would require procedural revisions to implement, but would require procedural revisions to implement, but would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: Whether other environmental impacts of				
those used in the Orion system. These data can be incorporated in the NDAA model to provide more accurate model results. No cost. No cost. Site and software licenses required. The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether each technology is compatible with weisting operations and technologies in use by the applicant FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects N/A N/A N/A N/A N/A N/A N/A N/				
can be incorporated in the NOAA model to provide more accurate model results. COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Compatible with operations. Compatible with existing operations and Whether each technology is compatible with existing operations and technologies in use by the applicant Whether each technologies in use by the applicant Whether path (and the provided more accurate model results. No cost. Site and software licenses required. Unknown frequesncy of data updates. N/A Unknown frequesncy of data updates. Compatible with existing operations and technologies in use by the applicant Compatible with operations. Compatible with the existing operations and technologies with changes to procedures and equipment. Requires training personnel. Picture. N/A. Already in use. Used successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. No procedural revisions to implement, but would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: Whether other environmental impacts of				
COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant Compatible with operations. Compatible with avite existing operations and technology is compatible with avite existing operations and technologies in use by the applicant Compatible with operations. Compatible with Arctic ERMA and other ArcGIS-based mapping applications for Common Operating Picture. Compatible with existing operations and technologies with changes to procedures and equipment. Requires training personnel, requires training personnel, requires training personnel. FEASIBILITY: N/A. Already in use. N/A. Already in				
COST: The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether ode in equipment and other operational aspects No cost. Site and software licenses required.		-		
The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether each technologies in use by the applicant N/A. Already in use. N/A. Already in use. N/A. Already in use. N/A N/A N/A N/A N/A N/A N/A N/		provide more accurate moder resures.		
The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether each technologies in use by the applicant N/A. Already in use. N/A. Already in use. N/A. Already in use. N/A N/A N/A N/A N/A N/A N/A N/				
The cost to the applicant of achieving BAT, including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether each technologies in use by the applicant N/A. Already in use. N/A. Already in use. N/A. Already in use. N/A N/A N/A N/A N/A N/A N/A N/	COST.	No cost for this somion	No cost	Cita and software licenses required
including consideration of that cost relative to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether other environmental impacts of Current models are kept up to date by N/A NOAA. N/A N/A N/A N/A Unknown frequesncy of data updates. Compatible with operations. Compatible with existing operations and technology is compatible with Arctic ERMA and other ArcGIS-based mapping applications for Common Operating Picture. N/A. Already in use. Used successfully by spill responders throughout the U.S. No procedural revisions required. N/A N/A N/A N/A N/A N/A N/A N/		No cost for this service.	INO COST.	Site and software licenses required.
to the remaining years of service of the technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether other environmental impacts of Current models are kept up to date by N/A NOAA. N/A N/A N/A Unknown frequesncy of data updates. Compatible with operations. Compatible with existing operations and technology is compatible with operations. Compatible with cannot be detected and paping applications for Common Operating Picture. Compatible with each technologies with changes to procedures and equipment. Requires training personnel. Compatible with existing operations and technologies with changes to procedures and equipment. Use of the technology requires training personnel. N/A. Already in use. Vised successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. No procedural revisions to implement, but would require no substantial engineering changes. N/A N/A N/A N/A N/A N/A				
technology is use by the applicant. AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether each technologies in use by the applicant COMPATIBILITY: Whether each technologies in use by the applicant FEASIBILITY: The practical feasibility of each technology in use. N/A. Already i				
AGE AND CONDITION: The age and condition of technology in use by the applicant COMPATIBILITY: Whether each technologies in use by the applicant Compatible with operations. Compatible with operations for Common Operating Picture. N/A. Already in use. Current models are kept up to date by N/A NOAA. N/A N/A N/A Unknown frequesncy of data updates. Compatible with existing operations and technologies with changes to procedures and equipment. Requires training personnel. Compatible with existing operations and technologies with changes to procedures and equipment. Use of the technology requires training personnel. N/A. Already in use. Used successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. No procedural revisions to implement, but would require procedural revisions to implement, but would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: N/A N/A N/A				
The age and condition of technology in use by the applicant COMPATIBILITY: Whether each technology is compatible with operations. Compatible with operations and technologies in use by the applicant Compatible with operations. Compatible with existing operations and technologies in use by the applicant Compatible with operations. Compatible with existing operations and technologies with changes to procedures and equipment. Requires training personnel. FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects N/A. Already in use.				
by the applicant COMPATIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects ENVIRONMENTAL IMPACTS: N/A Whether other environmental impacts of			N/A	Unknown frequesncy of data updates.
COMPATIBILITY: Whether each technology is compatible with with Arctic ERMA and other ArcGIS-based existing operations and technologies in use by the applicant FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects N/A. Already in use. Whether other environmental impacts of N/A Whether other environmental impacts of		NOAA.		
Whether each technology is compatible with existing operations and technologies in use by the applicant With Arctic ERMA and other ArcGIS-based mapping applications for Common Operating by the applicant FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects N/A. Already in use. With Arctic ERMA and other ArcGIS-based mapping applications for Common Operating and equipment. Requires training personnel. Used successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. It would require procedural revisions to implement, but would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: Whether other environmental impacts of		Compatible with some 'Compatible with	Commental and the and the second	Commontible with switch
existing operations and technologies in use by the applicant Picture. Picture. and equipment. Requires training personnel. and equipment. Use of the technology requires training personnel.	l .			I
by the applicant FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects N/A. Already in use. N/A. Already in use. Used successfully by spill responders throughout the U.S. No procedural revisions required. Used successfully by spill responders throughout the U.S. It would require procedural revisions to implement, but would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: Whether other environmental impacts of			, ,	
FEASIBILITY: The practical feasibility of each technology in terms of engineering and other operational aspects N/A. Already in use. N/A. Already in use. Used successfully by spill responders throughout the U.S. No procedural revisions required. would require procedural revisions to implement, but would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: Whether other environmental impacts of			and equipment requires training personner.	
The practical feasibility of each technology in terms of engineering and other operational aspects throughout the U.S. No procedural revisions required. throughout the U.S. No procedural revisions throughout the U.S. It would require procedural revisions to implement, but would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: N/A Whether other environmental impacts of	,			, and a grander
terms of engineering and other operational aspects required. procedural revisions to implement, but would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: N/A N/A N/A Whether other environmental impacts of	FEASIBILITY:	N/A. Already in use.	Used successfully by spill responders	Used successfully by spill responders
aspects would require no substantial engineering changes. ENVIRONMENTAL IMPACTS: N/A N/A N/A Whether other environmental impacts of	The practical feasibility of each technology in		throughout the U.S. No procedural revisions	throughout the U.S. It would require
ENVIRONMENTAL IMPACTS: N/A N/A N/A N/A Whether other environmental impacts of			required.	
ENVIRONMENTAL IMPACTS: N/A N/A N/A Whether other environmental impacts of	aspects			
Whether other environmental impacts of	ENVIRONMENTAL INARA CTO	lu/a	11/2	-
·		IN/A	IN/A	IN/A
cach technology, sach as an, falla, water	· ·			
pollution, and energy requirements, offset				
ponduon, and entergy requirements, oriset any anticipated environmental benefits	[r			
	,,			

ACS Tech. Manual Vol. 1, 9/20 NOTE: All values given on these pages are for planning purposes only.

NOTE: All values given on these pages are for planning purposes only.

The Wildlife Protection Plan in Tactics W-1 through W-7 can be considered best available technology because it aligns with the recently updated Wildlife Protection Guidelines for Alaska, published by the Alaska Regional Response Team (ARRT) Wildlife Protection Working Group. The guidelines focus on tiered response strategies to protect migratory birds, marine mammals, and terrestrial mammals following an oil discharge in Alaska (including offshore waters), when those wildlife may be, or have been, oiled. Response strategies include (but are not limited to), controlling the release or spread of oil and/or the removal of oiled carcasses from the environment (primary response strategies); keeping wildlife away from oiled areas through pre-emptive capture and/or use of deterrent techniques (secondary response strategies); and/or the capture and treatment of oiled wildlife (tertiary response strategies).

The new guidelines include reconnaissance and wildlife capture tactics. As tactics are added and refined, they will be incorporated into the ACS Technical Manual where appropriate.


The Alaska Clean Seas Wildlife Stabilization Center was designed in consultation with recognized experts in the field, including the International Bird Rescue (IBR). It is central to a suite of tools available at the North Slope to response to oiled wildlife. Frequent training classes and exercises are conducted with IBR and other wildlife response organizations to maintain responder readiness and familiarity with the tools and tactics. Additional contractual and working relationships have been established with wildlife care and treatment organizations in Alaska to assist with animal issues in emergency response.

THIS PAGE DELIBERATELY LEFT BLANK

BARGE SAMPLE LAYOUT

A barge can be used for support operations during a spill. Such operations include the following:

- Transporting response equipment
- Handling and transporting sewage from the response vessels
- Transporting potable water and food
- Handling and transporting solid waste (oily waste and garbage)
- Conducting crew changes
- Supporting refueling operations with a fuel tank
- Providing mechanical support and spare parts
- · Providing safety support and transporting safety gear, including decontamination equipment

At least one vessel or workboat is required for this tactic.

A vessel could be used to meet portions of the logistical support requirements.

Logistical Support for On-Water Operations (Page 2 of 2) TACTIC L-12

NOTE: "Base Location" is storage location (may change seasonally); "Mobe Time" is time to get it out of storage, prepare it for operation, and make it ready to travel (concurrent for all equipment); "Deploy Time" is time to make it operational for its intended use at the spill site. These times do not include travel time from base to spill site, which may have multiple components (see Tactic L-3).

EQUIPMENT AND PERSONNEL

	EQUIPMENT	BASE LOCATION	FUNCTION	PIECES	# STAFF PER SHIFT	MOBE TIME	DEPLOY TIME
	Barge	West Dock	Support	1	6	6 hr	0
	Fuel Tank	Colville	Fuel	1	0	0	0
	Mechanic Support	All	Repair and Maintenance	1	1	2 hr	0
	Portable Toilet	West Dock	Staff needs	2	0	0	0
or	Envirovac	GPB	Staff needs	1	_	1 hr	1 hr
	PPE and Decon Equipment	All	Support	Various	1	0	0
	Work Boat	All	Personnel transport	Several	1	1 hr	1 hr

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- This tactic may be used to support gross decontamination of vessels. See Tactic S-7.
- See Tactic S-6 for resources and techniques for personnel decontamination.

INITIAL **ACTIONS**

SITE SAFETY AND CONTROL

- ☐ Health Hazards: Respiratory/dermal/ingestion/exposure levels/PPE
- ☐ Fire/Explosion: LEL's/explosion proof equipment
- □ Air Monitoring: Suggested priority action that should continue as required throughout the response
- ☐ Biological Hazards: Environmental and chemical
- ☐ Unsafe Conditions: Weather, heavy equipment, adequate lighting, etc.
- ☐ Medical Emergency: Medical plan and on-site first-aid capability

NOTIFICATIONS

- □ **Corporate**: Have the appropriate corporate notifications been made?
- □ Local: Has North Slope Borough and/or local communities been notified?
- ☐ State: Have the proper State of Alaska notifications been made?
- ☐ Federal: Have the proper Federal notifications been made?

SPILL ASSESSMENT

☐ Characterization: Access control/hazard evaluation/PPE requirements/site description

SOURCE CONTROL

- □ Salvage
- □ Relief Well
- ☐ Flow Control/Mitigation
- □ Repair

RESPONSE

STAGING AREAS

- □ Location: Best location to support remote operations in area outside contaminated areas
- □ Control: Establish check-in/check-out system for personnel and equipment
- ☐ Space: Make sure there's enough room

CONTAINMENT

- ☐ Booming: Ensure you're using right boom for the job
- ☐ Earth/Snow Berms: May be special permit requirements

MECHANICAL RECOVERY

- ☐ **Skimming:** Skimmer requirements will change as oil weathers and emulsifies
- ☐ Heavy Equipment

BURNING

- ☐ Burn Plan: Who, what, where, when, why?
- ☐ Containment: Oil needs to be >2mm to sustain combustion.
- ☐ Ignition System: Heli-torch, hand-held igniters, or igniter of opportunity
- ☐ Permit: FOSC and ADEC approval required to burn

DECONTAMINATION

- ☐ Personnel: Required immediately for first responders as well as longer term
- ☐ Heavy Equipment: What, when, how?
- ☐ Boom: What, when, how?
- ☐ **Skimmer:** What, when, how?
- □ **Vessel:** What, when, how?
- ☐ Small Equipment/Tools: What, when, how?

SURVEILLANCE/TRACKING

- ☐ Modelling: If offshore, use hand calculations supplemented with NOAA model
- ☐ Aerial Surveillance: Should be done at least daily to track oil and ground-truth model

Emergency Action Checklist (Page 2 of 2) TACTIC A-1

	Posterior despression
	☐ Tactical Surveillance: Critical to have aerial surveillance to position resources in the field ☐ Mass Balance Calculations: Be as accurate as possible before releasing information SHORELINE PROTECTION
	 Sensitive Habitat Identification: Identify sensitive habitat to prioritize protection Prioritization Plan: Develop plan
	SHORELINE CLEANUP
	 Assessment: Form Shoreline Cleanup Assessment Teams (SCAT) Identify Beach Type: Characterize and map beach types and oiled areas Identify Cleanup Techniques: Determine correct techniques for each beach type and implement cleanup
	WASTE DISPOSAL
	 □ Liquid Oily Waste: Where, when, how? □ Solid Oily Waste: Where, when, how? □ Domestic Waste: Where, when, how? □ Hazardous: Where, when, how? □ Transport: Where, when, how? □ Storage: Temporary or long-term/impermeable □ Disposal: Identify options □ Permits: Ensure permits are in place
	COMMUNICATIONS
	☐ Radio (air-ground, etc.): Need to establish as soon as possible and have ability to expand as needed
ENVIRONMENTAL	SENSITIVITY ID: Identify and prioritize: cultural, archaeological, environmental
	 Sensitive Wildlife Habitat: Identify and prioritize Cultural/Archaeological: Identify; confidentiality issues may arise
	WILDLIFE RESPONSE
	 Hazing: Use only qualified personnel Capture: Capture of terrestrial animals to be done by ADF&G Stabilization: Ensure wildlife facility is operational Treatment: Use licensed DVM Release: Negotiate location and timing with trustee agencies
	NRDA
	□ Survey: Initiate as soon as practical □ Documentation
ANCILLARY	PUBLIC RELATIONS: Initiate as soon as practical
ACTIVITIES	SECURITY
	LAND OWNERSHIP ISSUES: Ensure you have permission to enter native allotments
SPILL PROJECT	DEMOBILIZATION: Commence planning as soon as possible
CLOSURE	SITE RESTORATION
	 Material removal: Will cause a disposal problem Revegetation: Anticipate multi-year program Bioremediation: Anticipate multi-year program
	CLAIMS

EXTERNAL AND AGENCY NOTIFICATION CHECKLIST

The following is provided as guidance to ACS member companies on notification. Each company should have its own procedure and reporting forms.

- □ Each operation should designate person or position responsible for agency notification
- ☐ Assure that all required agency notifications have been made.
- ☐ Complete and send via fax a spill report.
- ☐ Make internal company notifications as required by company policy and/or company C-Plans.
- ☐ Make additional agency notifications as merited by circumstances of spill.
- □ As response requirements dictate, contact ACS and activate Mutual Aid.
- ☐ When appropriate, complete required written report to ADEC of spill and response.
- ☐ When appropriate, activate ACS emergency use permits (see Tactic A-3).

NOTE: At time of incident, determine whether ARRT Guideline Checklist must be completed.

WRITTEN REPORTING REQUIREMENTS

18 AAC 75.300 requires notification of the Alaska Department of Environmental Conservation of any spill on State lands or waterways. After notification of the discharge has been made to the department, the department will, at its discretion, require interim reports until cleanup has been completed (18 AAC 75.307). A written final report must be submitted within 15 days of the end of cleanup operations, or if no cleanup occurs, within 15 days of the discharge (18 AAC 75.307). Interim and final written reporting requirements are specified in 18 AAC 75.307 and must contain the following information:

- Date and time of discharge or release.
- Location of discharge or release.
- · Name of facility or vessel.
- Name, mailing address, and telephone number of person or persons causing or responsible for the discharge and the owner and the operator of the facility or vessel.
- Type and amount of each hazardous substance discharged or released.
- Factors that caused or contributed to the discharge or release.
- Description of any environmental effects of the discharge or release, or the containment and cleanup, to the extent those effects can be identified.
- Description of the containment or cleanup action(s) taken.
- · Estimated amount of hazardous substance cleaned up and hazardous waste generated.
- Date and method of disposal or treatment of the hazardous substance, contaminated equipment, contaminated materials, contaminated soil, and contaminated water.
- Description of actions being taken to prevent another discharge or release.
- Other information the department requires to fully assess the cause and impact of the discharge or release, including any sampling reports and a description and estimate of any remaining contamination.

	_		^જ ેલું
USE LETTER CODE FOR RADIO TRANSMISSION	1	DATE OF SPILL/REPORT TIME OF SPILL/REPORT	
A SPILL LOCATION	LOCATION	LAT/LONG	GRID
B SOURCE OF SPILL IS	MODULES, TANK, VESSEL,	PIPELINE, ETC.	
C SUBSTANCE TYPE AND VOLUME	TYPE	VOLUME	
D APPARENT CAUSE OF SPILL	ACCIDENT, CORROSION, B SOURCE SECURED? YES/		
E SPILL STATUS & RATE OF RELEASE	TERMINATED CONTINUING		
F CONTAMINATED AREA	NATURE AND EXTENT OF C	CONTAMINATED AREA	
G DIRECTION OF SPILL MOVEMENT	CARDINAL DIRECTION OR (THREAT TO WATERWAYS?	GEOGRAPHIC DESCRIPTION YES/NO	
H INJURIES	EXTENT		, , ,
I SPILL CONTROL	IS THE SPILL CONTAINED? YES NO	IF YES, HOW?	
J ENVIRONMENTAL CONDITIONS	WIND SPEED WIND DIRECTION SEA STATE AIR TEMP VISIBILITY	GENERAL CONDITIONS OF OPE (Visibility, weather, ice, currents)	ERATIONS
K REMARKS	ROADS, OTHER ACCESS ACTION UNDERTAKEN		EQUIPMENT REQUIRED

SAMPLE SPILL ASSESSMENT REPORT

REPORTED BY:

NAME

POSITION

DATE

AGENCY REPORTING REQUIREMENTS FOR OIL SPILLS

AGENCY	SPILL SIZE	VERBAL REPORT	PHONE NUMBERS	ALASKA CONTACT	WRITTEN REPORT
National Response Center (notifies all appropriate federal agencies)	See specific federal agency below for guidance on reportable spill size	Immediately	800.424.8802 (24 hrs)		Not required form is completed during phone notification process.
U.S. Environmental Protection Agency (EPA)	Any size to navigable waters of the U.S. (includes tundra) or to land that may threaten navigable waters	Immediately	907.257.1342 (M-F, 8-5) 206.553.1263 (24 hrs) 907.271.3424 (fax)	Matt Carr 24 hrs Seattle	For facility requiring SPCC plan if spill is 1,000 gallons or more or if it is second spill greater than 42 gallons in 12 months.
U.S. Coast Guard (USCG)	Any size in or threatening navigable waters	Immediately	907.271.6700 (24 hrs) 907.271.6751 (fax)	Marine Safety Office	Not required, but requested.
U.S. Department of Transportation (DOT)	Any size from a regulated pipeline	Immediately	800.424.8802 (24 hrs)		Required within 30 days on DOT Form 7000-I.
U.S. Department of Interior (DOI), U.S. Fish & Wildlife Service (USFWS)	Any size that poses a threat to fish and wildlife	Immediately	907.271.2797		
U.S. Department of Interior (DOI), Bureau of Ocean Energy Management, Regulation Enforcement (BOEMRE)	All spills into marine waters	Immediately	907.334.5300 (M-F, 8-5) 907.250.0546 (24 hrs) 907.334.5302 (fax)	Jeff Walker	Copies of any reports submitted to ADEC, as soon as possible.
	WATER: any spill	Immediately			A followup within 15 days of end of cleanup for spills > 10 gallons.
Alaska Department of Environmental Conservation (ADEC)	LAND: 1-10 gallons	None	907.451.2121 (M-F, 8-5) 907.451.2362 (fax)	ADEC Spill Line or	A monthly written record of each discharge or release, including cumulative releases.
Notrietti Alaska nespotise teatti	LAND: >55 gallons	Immediately	800.476.9300 (alter flours)	Alaska State Iroopers	Fax on same day spill occurs.
	LAND: >10 but <55 gallons	48 hrs			Fax on same day spill occurs.
	WATER: any spill	Immediately			A follow-up report within 15 days of end of cleanup for spills greater than 10 gallons.
Alaska Department of Natural Resources (ADNR)	LAND: 1-10 gallons	None	907.451.2678 907.451.2751 (fax)	Spill Report Number	A monthly written record of each discharge or release, including cumulative releases.
	LAND: >55 gallons	Immediately			Fax on same day spill occurs.
	LAND: >10 but <55 gallons	48 hrs			Fax on same day spill occurs.
Alaska Oil & Gas Conservation Commission (AOGCC)	All spills from wells or involving crude loss	Immediately	907.279.1433 (24 hrs) 907.276.7542 (fax)		Within 5 days of loss.
	>55 gallons	Immediately		PainoZ bae paittiming	Courtesy copies of any reports submitted.
North Slope Borough (NSB)	10-55 gallons	None	907.852.0440 (Barrow)	Ralph Davis, Office of	Within 15 days of end of cleanup.
Local On-Scene Coordinator	1-10 gallons	None	907.852.5991 (fax)	Safety and Environ-	Compile in monthly report.
	<1 gallon	None			None

THIS PAGE DELIBERATELY LEFT BLANK

The following tables identify pre-approved permits that have been issued to ACS and that are available to ACS' member companies. Each permit has its own reporting requirements and renewal dates. Check with the ACS Planning Manager for the latest information on these permits.

EMERGENCY USE PERMITS

TYPE PERMIT	PERMIT #	ISSUING AGENCY	PURPOSE
Land Use	LAS 22375	Alaska Dept. of Natural Resources	Oil Spill Emergency Use Permit
Title 16 Fish Habitat Permit	FG94-III-0218	Alaska Dept. of Natural Resources	Oil Spill Emergency Use Permit
Bird Hazing	FG05-III-0012	Alaska Dept. of Fish & Game	Oil Spill Emergency Use Permit
Mammal Hazing and Mammal Stabilization, Transport & Disposal	FG05-III-0013	Alaska Dept. of Fish & Game	Oil Spill Emergency Use Permit
Capture, Salvage and Rehabilitation of Migratory Birds & Raptors	MB772518-0	U.S. Fish & Wildlife Service	Oil Spill Emergency Use Permit
Information Use Agreement	3140-4 AHRS	Alaska Dept. of Natural Resources	Access to Alaska Heritage Resources Survey information
Oil Spill Removal Organization Classification	89	U.S. Coast Guard National Strike Force Coordination Center	OSRO Classification
Oil Spill Primary Response Action Contractor Registration	09-01-08-350	Alaska Dept. of Environmental Conservation	RAC Registration
NPDES Mobil Spill Response	AKG-33-0000 Discharge #007	Environmental Protection Agency	Authorization to Discharge Pollutants
ACOE Nationwide Oil Spill Cleanup	Permit Number 20	Department of the Army	Authorization of placement of materials in navigable waters for oil spill cleanup activities.
Marine Mammal Hazing	932-1489-05	National Marine Fisheries	Authorization for hazing (take) of live ma- rine mammals and endangered species in peril (in vicinity of an oil spill)
Permit for Small Takes of Marine Mammals	None	National Marine Fisheries	E-mail on non-requirement for this permit
NPRA Land Use	None	Bureau of Land Management	E-mail on non-requirement for this permit

NON-EMERGENCY USE PERMITS

TYPE OF PERMIT	PERMIT #	ISSUING AGENCY	PURPOSE	
Land Use	LAS 22374	Alaska Dept. of Natural Resources	Storage of spill response equipment and training exercises	
NSB Development	NSB 99-033	North Slope Borough	Oil spill training activities	
Fish Habitat Permit	FG99-III-0002	Alaska Dept. of Natural Resources	Boom pre-deployment	
Fish Habitat Permit	FH07-III-0119	Alaska Dept. of Natural Resources	Pre-staged equipment winter access	
Fish Habitat Permit	FG92-III-0212	Alaska Dept. of Natural Resources	Summer oil spill containment and recovery training activities	
Fish Habitat Permit	FG92-III-0213	Alaska Dept. of Natural Resources	Winter oil spill containment and recovery training activities	
Bird Hazing	05-060	Alaska Department of Fish & Game	Non-spill related bird hazing	
Open Burn Approval for In- Situ Burn Training	AQ907OBR01	Alaska Department of Environ- mental Conservation	Open burning for fire training at ACS fire training site	
Boom Deployment in Navigable Waters	POA-2005-833-D POA-2005- 834-D POA-2005-835-D POA- 2005-836-D POA-2005-837-D POA-2005-838-D POA-2005- 839-D POA-2005-840-D POA- 2005-841-D POA-2005-842-D POA-2005-843-D POA-2005- 844-D POA-2005-1785-D	Department of the Army	Boom pre-deployment in navigable waterways	
USCG Aids to Navigation	LLNR #1435	Seventeenth Coast Guard District	Boom pre-deployment	
List and Maps of Pre-Staged Equipment Sites, Pre-De- ployed Boom Sites, Staging Areas, and Boat Launch Sites				
Stormwater Discharge	AKG-33-0000 (Draft)	EPA / NPDES Permits Unit	Stormwater Discharge Permit for ACS facilities	
Hazardous Materials Trans- portation	061909 700 005RT	U.S. Department of Transportation	Hazardous Materials Certificate of Registration	

DEPLOYMENT CONSIDERATIONS AND LIMITATIONS

- Geographical area of coverage: All state land owned between the west bank of the Colville River and the west bank of the Canning River north of 68° N. latitude.
- Emergency use permits allow activities outside normal permit stipulations if the activities would result in a significantly increased rate of oil spill cleanup.
- Permits are assignable to ACS member companies and may be accessed by taking the following steps:
 Notification to the relevant agency(ies) that permit(s) are being activated, including the name of the member company and the primary point of contact.
- Member companies should notify ACS when activating the permit.
- Users of the permits are responsible for any registered site restoration as a result of their activities.
- Permit users are required to meet reporting requirements associated with all the permits. These requirements are identified in the permits.

TACTIC A-4 Training Requirements for Response Personnel (Page 1 of 4)

ACS provides spill response training for their own personnel as well as the North Slope Spill Response Team (NS-SRT) and Incident Command System (ICS). This training includes both regulatory required training and training specific to various response positions and activities. ACS has developed five labor categories for the NSSRT. Each of these categories has minimum requirements for qualifications. ACS also maintains the response training records for all ACS staff, NSSRT and ICS members.

The five labor categories and criteria identified for NSSRT members are as follows.

General Laborer

The General Laborer is a responder with minimal or no field experience in spill response. Duties are associated with mobilization, deployment, and support functions for the response. Support tasks such as deployment of boom sections, assembly of anchors systems, assembly of temporary storage devices, loading and unloading equipment, and decontamination of equipment are typical tasks undertaken by this responder classification. Responders in this classification must have documentation of compliance with the following minimum training requirements:

- Current 24 Hour HAZWOPER certification
- H₂S Training
- Current North Slope Training Cooperative Academy

Over time, the NSSRT training program will bring each NSSRT member from their entry point as a General Laborer to at least the Skilled Technician level.

Skilled Technician

The Skilled Technician is a responder who has experience in spill response activities at a higher level through having received specific training, having performed related activities as part of regular employment, or having participated in spill response incidents. Tasks such as the operation of skimmers, powerpacks, and transfer pumps are typical tasks undertaken by this responder. Responders in this classification must have documentation of compliance with the following minimum training requirements:

- Must meet the minimum training requirements for General Laborer
- Completion of 16 hours of training or equivalent experience in any combination of the following categories:
- Response equipment deployment and use
- Response tactics and equipment requirements
- Emergency response management (ICS)
- Staging area management and support
- Boat safety, navigation, or operations
- Contingency plan familiarization
- Completion of 16 hours of actual spill response, response exercise, or field deployment time in any combination of the following activities:
- Operation of recovery equipment systems
- Operation of transfer and storage equipment systems
- Deployment and use of containment systems
- —Decontamination procedures
- Wildlife hazing, capture, and stabilization
- Must have ten completed equipment proficiency checks

Training Requirements for Response Personnel (Page 2 of 4) TACTIC A-4

Team Leader

Team Leader roles may include such categories as Task Force Leader, Containment or Recovery Site Team Leader, or Staging Area Manager. A Team Leader has attended additional training in the actions, responsibilities, and task associated with managing portions of an incident. Responders in this classification must have documentation of compliance with the following minimum training requirements:

- Must meet the minimum training requirements for General Laborer
- · Must meet the minimum training requirements for Skilled Technician
- Must have a current 8-hour HAZWOPER Supervisor certification
- Must have 20 completed equipment proficiency checks

Vessel Operator — Nearshore

Responders qualified as Vessel Operator — Nearshore are tasked with safe operation of vessels less than 30 feet in length. These vessels have a hull design and electronics intended primarily for operation in nearshore environments or occasionally, in conjunction with larger vessels, in an offshore response. Typical duties include towing and placement of containment booms, setting and tending anchors, and movement of equipment to remote sites. Responders in this classification must have documentation of compliance with the following minimum requirements:

- Must meet the minimum training requirements for General Laborer
- · Must meet the criteria for any one of the following:
- Completion of the ACS Captain and Crew, or Boat Safety and Handling training programs
- Completion of 40 hours of equivalent training or experience on vessels, including navigation, charting, vessel electronics, and docking and maneuvering procedures
- Current USCG Operator Uninspected Passenger Vessel, or higher, license
- · Completion of nearshore vessel proficiency check

Vessel Operator — Offshore

Responders qualified as Vessel Operator — Offshore are tasked with the safe operation of vessels larger than 30 feet in length. These vessels have a hull design and electronics capable of sustaining operations in an offshore environment. Typical duties include towing of containment booms, working in conjunction with barge containment operations, towing mini-barges, operating skimmers to recover oil, providing ice management support, and providing logistical support to offshore operations. Responders in this classification must have documentation of compliance with the following minimum requirements:

- · Must meet the minimum training requirements for General Laborer
- Must meet the criteria for any one of the following:
- Completion of the ACS Captain and Crew Training Program
- Completion of 40 hours of equivalent training or experience on vessels larger than 30 feet, including navigation, anchoring, vessel electronics, and docking and maneuvering procedures
- Current USCG 25-Ton Near Coastal, or larger, license
- Completion of offshore vessel proficiency check

Alaska Clean Seas provides a wide variety of response-related training courses to the NSSRT. These courses are divided into three basic categories: general courses that are taught on an as-needed basis, short courses that are taught regularly, and equipment proficiency checks that are also taught regularly.

Below is a representative list of the various courses that ACS provides to the NSSRT members.

- Basic Oil Spill Response (Summer)
- Basic Oil Spill Response (Winter)
- Arctic Cold Weather Survival
- Arctic Ocean Survival
- Swiftwater 1st Responder
- HAZWOPER Supervisor
- Winter Oil Spill Operations
- Summer Oil Spill Operations
- Bird Collection and Stabilization
- In-Situ Burning
- SRT Wildlife Hazing Awareness
- Captain & Crew Training 1 & 2
- Airboat Operations
- · Boat Safety and Handling
- Boom Deployment on Rivers
- Decontamination Procedures
- Global Positioning Systems
- ICS Basic Radio Procedures
- Skimmer Types and Applications
- Snowmachine, ARGO and ATV Operation
- Weatherport and Survival Equipment
- Bear Deterrence
- Bird Deterrence
- Fastanks and Bladders
- Nearshore Operations
- Air Monitoring
- Deckhand/Knot Tying

- · Charting & Navigation
- Winter Response Tactics
- Summer Response Tactics
- Winter Equipment PC's
- Summer Equipment PC's
- C-Plan Review
- Tundra Cleanup Techniques
- Plugging and Patching
- · SCAT for 1st Responders
- · Archaeological Resource Awareness
- Field Mechanics of ICS
- Staging Area Management
- North Slope Spill Overview
- Bloodborne Pathogens
- Respiratory Protection
- Marine Operations Awareness
- Hazwoper Supplemental Refresher
- Culvert Plugging/Underflow Dams
- Oil Spill Olympics
- Equipment Deployment Exercises
- Immersion Suit Training
- Ice Safety Awareness
- Best Available Technology (BAT)
- Field Organization and Resource Tracking
- Approximately 160 Proficiency Checks on Various Equipment

INCIDENT COMMAND SYSTEM (ICS) TRAINING

ACS utilizes the National Incident Management System (NIMS) Incident Command System (ICS) and the Alaska Incident Management System (AIMS) for all oil spill response operations on the North Slope.

Primary references for the NIMS ICS structure are found in U.S. Coast Guard publications and on Coast Guard and FEMA websites. The primary reference for ACS regarding NIMS ICS is the Coast Guard Incident Management Handbook, COMDTPUB P3120.17A. Copies may be obtained by calling (202) 512-0000, or found online at www.gpo.gov.

The primary reference for AIMS is found at dec.alaska.gov/spar/perp/docs/AIMS_Guide-Complete(Nov02).pdf.

Copies of all the various NIMS ICS forms can also be obtained online at www.uscg.mil/forms/ics.asp ACS internally utilizes enhanced versions of the ICS-201 and ICS-209 forms, which are somewhat different from the forms online. Copies of these enhanced ICS forms can be obtained by calling the ACS training department at: (907) 659-3229.

ACS provides ICS training courses and facilitates member company exercises and drills. Below is a representative list of the various ICS courses that ACS provides:

COURSE / WORKSHOP	COURSE PROVIDER	PREREQUISITES	DURATION	TRAINING AVAILABILITY THROUGH ACS
ICS 100	Online: www.training.fema.gov	None	1-2 hours	n/a
	Alaska Clean Seas	None	1.5 hours	As requested
ICS 200	Online: www.training.fema.gov	ICS 100	1 day	n/a
	Alaska Clean Seas	ICS 100	1 day	As requested
ICS 300	Alaska Clean Seas	ICS 100, ICS 200	2 days	As requested

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE

OIL SPILL PRIMARY RESPONSE ACTION CONTRACTOR REGISTRATION

*Registration Approval Amended July, 6, 2021 to add Interior Region

NAME: Alaska Clean Seas
ADDRESS: P.O. Box 340022
CITY, STATE, ZIP: Prudhoe Bay, AK 99734

APPLICATION OF Alaska Clean Seas

FOR REGISTRATION AS AN OIL SPILL PRIMARY RESPONSE ACTION CONTRACTOR IN THE **North Slope and Interior Alaska** REGION(S) OF THE STATE OF ALASKA IS:

(XX) APPROVED FOR THREE YEARS

EFFECTIVE FROM:
REGISTRATION NUMBER:
December 31, 2023

OIL SPILL PRIMARY RESPONSE ACTION CONTRACTORS REGISTERED AND APPROVED BY THE DEPARTMENT MUST COMPLY WITH THE MINIMUM REGISTRATION STANDARDS OF 18 AAC 75.560.

NO LATER THAN **JANUARY 31** OF EACH YEAR, AN OIL SPILL PRIMARY RESPONSE ACTION CONTRACTOR REGISTERED BY THE STATE OF ALASKA SHALL PROVIDE TO THE DEPARTMENT A COMPLETE LIST OF OIL DISCHARGE PREVENTION AND CONTINGENCY PLANS IN WHICH THE CONTRACTOR HAS AGREED IN WRITING TO BE LISTED AS A PRIMARY RESPONSE ACTION CONTRACTOR.

(18 AAC 75.510(b)): REGISTRATION OF AN OIL SPILL PRIMARY RESPONSE ACTION CONTRACTOR BY THE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DOES NOT CONSTITUTE AN ASSURANCE BY THE DEPARTMENT OF THE QUALIFICATIONS OR ABILITIES OF THAT CONTRACTOR OR THAT THE CONTRACTOR WILL ADEQUATELY RESPOND TO A RELEASE OR THREATENED RELEASE OF OIL, NOR DOES IT PROVIDE A DEFENSE TO LIABILITY UNDER STATE LAW.

SIGNED,

Shauna McMahon

Contractor Registration Program

OSRO MECHANICAL CLASSIFICATION FOR OWNER/ORGANIZATION:

Alaska Clean Seas P.O. Box 340022, #1 Spine Road Prudhoe Bay, AK 99734

FOR OFFICIAL USE ONLY

NOTICE: This is *NOT* an official transcript!

COTP Zone	Operating Environment								
Western Alaska(Prudhoe Bay) - DISTRICT 17	River or Canal	\checkmark							
Western Alaska(Prudhoe Bay) - DISTRICT 17	Inland	\checkmark	\checkmark			\checkmark	\checkmark		
Western Alaska(Prudhoe Bay) - DISTRICT 17	Near Shore	\checkmark	\checkmark			\checkmark	\checkmark		